Skip to content

srushta02/TASK4--Use-SQL-queries-to-extract-and-analyze-data-from-a-database

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 

Repository files navigation

-- Task 4: SQL for Data Analysis on sales_data_sample

-- a) SELECT, WHERE, ORDER BY, GROUP BY SELECT ORDERNUMBER, CUSTOMERNAME, COUNTRY, SALES FROM sales_data_sample WHERE COUNTRY = 'USA';

SELECT ORDERNUMBER, CUSTOMERNAME, SALES FROM sales_data_sample ORDER BY SALES DESC LIMIT 10;

SELECT COUNTRY, SUM(SALES) AS total_sales FROM sales_data_sample GROUP BY COUNTRY ORDER BY total_sales DESC;

-- b) JOINS (Self Joins) SELECT o1.ORDERNUMBER, o1.CUSTOMERNAME, o2.PRODUCTLINE, o1.SALES FROM sales_data_sample o1 INNER JOIN sales_data_sample o2 ON o1.ORDERNUMBER = o2.ORDERNUMBER;

SELECT o1.ORDERNUMBER, o1.CUSTOMERNAME, o2.PRODUCTLINE, o1.SALES FROM sales_data_sample o1 LEFT JOIN sales_data_sample o2 ON o1.ORDERNUMBER = o2.ORDERNUMBER;

SELECT o1.ORDERNUMBER, o1.CUSTOMERNAME, o2.PRODUCTLINE, o1.SALES FROM sales_data_sample o1 RIGHT JOIN sales_data_sample o2 ON o1.ORDERNUMBER = o2.ORDERNUMBER;

-- c) Subquery SELECT DISTINCT CUSTOMERNAME FROM sales_data_sample WHERE CUSTOMERNAME IN ( SELECT CUSTOMERNAME FROM sales_data_sample GROUP BY CUSTOMERNAME HAVING SUM(SALES) > (SELECT AVG(SALES) FROM sales_data_sample) );

-- d) Aggregate Functions SELECT SUM(SALES) AS total_revenue FROM sales_data_sample; SELECT AVG(SALES) AS avg_sales FROM sales_data_sample; SELECT PRODUCTLINE, SUM(SALES) AS total_sales FROM sales_data_sample GROUP BY PRODUCTLINE ORDER BY total_sales DESC;

-- e) Views CREATE VIEW Top_Customers AS SELECT CUSTOMERNAME, COUNTRY, SUM(SALES) AS total_sales FROM sales_data_sample GROUP BY CUSTOMERNAME, COUNTRY ORDER BY total_sales DESC;

SELECT * FROM Top_Customers LIMIT 10;

-- f) Indexes CREATE INDEX idx_ordernumber ON sales_data_sample(ORDERNUMBER); CREATE INDEX idx_customername ON sales_data_sample(CUSTOMERNAME); CREATE INDEX idx_productline ON sales_data_sample(PRODUCTLINE);

Task 4: SQL for Data Analysis

Objective: Analyze the sales_data_sample table using SQL queries. Tools: MySQL (Workbench) Dataset: sales.sales_data_sample


a) SELECT, WHERE, ORDER BY, GROUP BY

Queries used to filter, sort, and group sales data. Helpful for region-wise and order-level insights.

b) JOINS

Self-joins demonstrate combining rows with the same order number. Useful for linking orders and product details.

c) Subqueries

Finds customers whose total sales exceed average sales. Helps identify high-value customers.

d) Aggregate Functions

Calculates total revenue, average sales, and category-wise performance. Provides key business metrics.

e) Views

Created a reusable view (Top_Customers) to analyze customer contribution easily. Simplifies reporting.

f) Indexes

Indexes on ORDERNUMBER, CUSTOMERNAME, and PRODUCTLINE improve query performance. Optimizes searches.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published