Skip to content

Commit

Permalink
Improvements to section on local rings
Browse files Browse the repository at this point in the history
  • Loading branch information
aisejohan committed May 10, 2024
1 parent 48c7a54 commit 35ed82f
Show file tree
Hide file tree
Showing 2 changed files with 148 additions and 89 deletions.
1 change: 1 addition & 0 deletions CONTRIBUTORS
Expand Up @@ -19,6 +19,7 @@ Konstantin Ardakov
Dima Arinkin
Kenneth Asher
Aravind Asok
Daniel Apsley
Clément Baillet
Dario Balboni
Badam Baplan
Expand Down
236 changes: 147 additions & 89 deletions algebra.tex
Expand Up @@ -3168,7 +3168,7 @@ \section{The spectrum of a ring}
$$
where the topology on the right hand side is that induced from the
Zariski topology on $\Spec(R)$. The inverse map is given
by $\mathfrak p \mapsto S^{-1}\mathfrak p$.
by $\mathfrak p \mapsto S^{-1}\mathfrak p = \mathfrak p(S^{-1}R)$.
\end{lemma}

\begin{proof}
Expand Down Expand Up @@ -3245,77 +3245,6 @@ \section{The spectrum of a ring}



\begin{remark}
\label{remark-fundamental-diagram}
A fundamental commutative diagram associated to a ring map
$\varphi : R \to S$, a prime $\mathfrak q \subset S$ and
the corresponding prime $\mathfrak p = \varphi^{-1}(\mathfrak q)$
of $R$ is the following
$$
\xymatrix{
\kappa(\mathfrak q) = S_{\mathfrak q}/{\mathfrak q}S_{\mathfrak q}
&
S_{\mathfrak q} \ar[l]
&
S \ar[r] \ar[l]
&
S/\mathfrak q \ar[r]
&
\kappa(\mathfrak q)
\\
\kappa(\mathfrak p) \otimes_R S =
S_{\mathfrak p}/{\mathfrak p}S_{\mathfrak p} \ar[u]
&
S_{\mathfrak p} \ar[u] \ar[l]
&
S \ar[u] \ar[r] \ar[l]
&
S/\mathfrak pS \ar[u] \ar[r]
&
(R \setminus \mathfrak p)^{-1}S/\mathfrak pS \ar[u]
\\
\kappa(\mathfrak p) =
R_{\mathfrak p}/{\mathfrak p}R_{\mathfrak p} \ar[u]
&
R_{\mathfrak p} \ar[u] \ar[l]
&
R \ar[u] \ar[r] \ar[l]
&
R/\mathfrak p \ar[u] \ar[r]
&
\kappa(\mathfrak p) \ar[u]
}
$$
In this diagram the arrows in the outer left and outer right columns
are identical. The horizontal maps induce on the associated spectra
always a homeomorphism onto the image. The lower two rows
of the diagram make sense without assuming $\mathfrak q$ exists.
The lower squares induce fibre squares of topological spaces.
This diagram shows that $\mathfrak p$ is in the image
of the map on Spec if and only if $S \otimes_R \kappa(\mathfrak p)$
is not the zero ring.
\end{remark}

\begin{lemma}
\label{lemma-in-image}
Let $\varphi : R \to S$ be a ring map. Let $\mathfrak p$
be a prime of $R$. The following are equivalent
\begin{enumerate}
\item $\mathfrak p$ is in the image of
$\Spec(S) \to \Spec(R)$,
\item $S \otimes_R \kappa(\mathfrak p) \not = 0$,
\item $S_{\mathfrak p}/\mathfrak p S_{\mathfrak p} \not = 0$,
\item $(S/\mathfrak pS)_{\mathfrak p} \not = 0$, and
\item $\mathfrak p = \varphi^{-1}(\mathfrak pS)$.
\end{enumerate}
\end{lemma}

\begin{proof}
We have already seen the equivalence of the first two
in Remark \ref{remark-fundamental-diagram}. The others
are just reformulations of this.
\end{proof}

\begin{lemma}
\label{lemma-quasi-compact}
\begin{slogan}
Expand Down Expand Up @@ -3379,10 +3308,13 @@ \section{Local rings}
\begin{definition}
\label{definition-local-ring}
A {\it local ring} is a ring with exactly one maximal ideal.
The maximal ideal is often denoted $\mathfrak m_R$ in this case.
We often say ``let $(R, \mathfrak m, \kappa)$ be a local ring''
to indicate that $R$ is local, $\mathfrak m$ is its unique maximal
ideal and $\kappa = R/\mathfrak m$ is its residue field.
If $R$ is a local ring, then the maximal ideal is often denoted
$\mathfrak m_R$ and the field $R/\mathfrak m_R$ is called the
{\it residue field} of the local ring $R$.
We often say ``let $(R, \mathfrak m)$ be a local ring''
or ``let $(R, \mathfrak m, \kappa)$ be a local ring''
to indicate that $R$ is local, $\mathfrak m$ is its unique
maximal ideal and $\kappa = R/\mathfrak m$ is its residue field.
A {\it local homomorphism of local rings} is a ring map
$\varphi : R \to S$ such that $R$ and $S$ are local rings and such
that $\varphi(\mathfrak m_R) \subset \mathfrak m_S$.
Expand All @@ -3392,8 +3324,41 @@ \section{Local rings}
\end{definition}

\noindent
A field is a local ring. Any ring map between fields is a local homomorphism
of local rings.
A field is a local ring. Any ring map between fields is a local
homomorphism of local rings.

\medskip\noindent
The localization $R_\mathfrak p$ of a ring $R$ at a prime $\mathfrak p$
is a local ring with maximal ideal $\mathfrak p R_\mathfrak p$. Namely, by
Lemma \ref{lemma-spec-localization} every prime ideal of $R_\mathfrak p$
is contained in the prime ideal $\mathfrak p R_\mathfrak p$
(hence this is a maximal ideal and the only maximal ideal of $R_\mathfrak p$).
The residue field of $R_\mathfrak p$ is denoted $\kappa(\mathfrak p)$;
we call it the {\it residue field of $\mathfrak p$}; by
Proposition \ref{proposition-localize-quotient} we may identify
$\kappa(\mathfrak p)$ with the field of fractions of the domain $R/\mathfrak p$.
Via the composition
$$
\Spec(\kappa(\mathfrak p)) \to \Spec(R_\mathfrak p) \to \Spec(R)
$$
the unique point of the source maps to the point $\mathfrak p$ of the target.

\medskip\noindent
Let $\varphi : R \to S$ be a ring map. Let $\mathfrak q \subset S$ be a prime
and consider the prime $\mathfrak p = \varphi^{-1}(\mathfrak q)$ of $R$.
Since $\varphi(\mathfrak p) \subset \mathfrak q$ the induced ring map
$$
R_\mathfrak p \to S_\mathfrak q,\quad r/g \mapsto \varphi(r)/\varphi(g)
$$
is a local ring map and we obtain an induced map of residue fields
$\kappa(\mathfrak p) \to \kappa(\mathfrak q)$.


\begin{example}
\label{example-not-local}
If $R$ is a local ring and $\mathfrak p \subset R$ is a non-maximal
prime ideal, then $R \to R_\mathfrak p$ is not a local homomorphism.
\end{example}

\begin{lemma}
\label{lemma-characterize-local-ring}
Expand Down Expand Up @@ -3428,13 +3393,6 @@ \section{Local rings}
a contradiction. Thus (4) and (1) are equivalent.
\end{proof}

\noindent
The localization $R_\mathfrak p$ of a ring $R$ at a prime $\mathfrak p$
is a local ring with maximal ideal $\mathfrak p R_\mathfrak p$. Namely,
the quotient $R_\mathfrak p/\mathfrak pR_\mathfrak p$ is the fraction
field of the domain $R/\mathfrak p$ and every element of $R_\mathfrak p$
which is not contained in $\mathfrak pR_\mathfrak p$ is invertible.

\begin{lemma}
\label{lemma-characterize-local-ring-map}
Let $\varphi : R \to S$ be a ring map. Assume $R$ and $S$ are local rings.
Expand All @@ -3457,10 +3415,110 @@ \section{Local rings}
contrapositive of (2) by Lemma \ref{lemma-characterize-local-ring}.
\end{proof}

\noindent
Let $\varphi : R \to S$ be a ring map. Let $\mathfrak q \subset S$ be a prime
and set $\mathfrak p = \varphi^{-1}(\mathfrak q)$. Then the induced ring
map $R_\mathfrak p \to S_\mathfrak q$ is a local ring map.
\begin{remark}
\label{remark-fundamental-diagram}
A fundamental commutative diagram associated to a ring map
$\varphi : R \to S$ and a prime $\mathfrak p \subset R$ is the following
$$
\xymatrix{
\kappa(\mathfrak p) \otimes_R S =
S_{\mathfrak p}/{\mathfrak p}S_{\mathfrak p}
&
S_{\mathfrak p} \ar[l]
&
S \ar[r] \ar[l]
&
S/\mathfrak pS \ar[r]
&
(R \setminus \mathfrak p)^{-1}S/\mathfrak pS
\\
\kappa(\mathfrak p) =
R_{\mathfrak p}/{\mathfrak p}R_{\mathfrak p} \ar[u]
&
R_{\mathfrak p} \ar[u] \ar[l]
&
R \ar[u] \ar[r] \ar[l]
&
R/\mathfrak p \ar[u] \ar[r]
&
\kappa(\mathfrak p) \ar[u]
}
$$
In this diagram the outer left and outer right columns are identical.
On spectra the horizontal maps induce homeomorphisms
onto their images and the squares induce fibre squares of topological spaces
(see Lemmas \ref{lemma-spec-localization} and \ref{lemma-spec-closed}).
This shows that $\mathfrak p$ is in the image of the map on Spec if and
only if $S \otimes_R \kappa(\mathfrak p)$ is not the zero ring.
If there does exist a prime $\mathfrak q \subset S$ lying over
$\mathfrak p$, i.e., with $\mathfrak p = \varphi^{-1}(\mathfrak q)$
then we can extend the diagram to the following diagram
$$
\xymatrix{
\kappa(\mathfrak q) = S_{\mathfrak q}/{\mathfrak q}S_{\mathfrak q}
&
S_{\mathfrak q} \ar[l]
&
S \ar[r] \ar[l]
&
S/\mathfrak q \ar[r]
&
\kappa(\mathfrak q)
\\
\kappa(\mathfrak p) \otimes_R S =
S_{\mathfrak p}/{\mathfrak p}S_{\mathfrak p} \ar[u]
&
S_{\mathfrak p} \ar[u] \ar[l]
&
S \ar[u] \ar[r] \ar[l]
&
S/\mathfrak pS \ar[u] \ar[r]
&
(R \setminus \mathfrak p)^{-1}S/\mathfrak pS \ar[u]
\\
\kappa(\mathfrak p) =
R_{\mathfrak p}/{\mathfrak p}R_{\mathfrak p} \ar[u]
&
R_{\mathfrak p} \ar[u] \ar[l]
&
R \ar[u] \ar[r] \ar[l]
&
R/\mathfrak p \ar[u] \ar[r]
&
\kappa(\mathfrak p) \ar[u]
}
$$
In this diagram it is still the case that the outer left and outer right
columns are identical and that on spectra the horizontal maps induce
homeomorphisms onto their image.
\end{remark}

\begin{lemma}
\label{lemma-in-image}
Let $\varphi : R \to S$ be a ring map. Let $\mathfrak p$
be a prime of $R$. The following are equivalent
\begin{enumerate}
\item $\mathfrak p$ is in the image of
$\Spec(S) \to \Spec(R)$,
\item $S \otimes_R \kappa(\mathfrak p) \not = 0$,
\item $S_{\mathfrak p}/\mathfrak p S_{\mathfrak p} \not = 0$,
\item $(S/\mathfrak pS)_{\mathfrak p} \not = 0$, and
\item $\mathfrak p = \varphi^{-1}(\mathfrak pS)$.
\end{enumerate}
\end{lemma}

\begin{proof}
We have already seen the equivalence of the first two
in Remark \ref{remark-fundamental-diagram}. The others
are just reformulations of this.
\end{proof}










Expand Down

0 comments on commit 35ed82f

Please sign in to comment.