About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Flatten an array.
import flattenArray from 'https://cdn.jsdelivr.net/gh/stdlib-js/utils-flatten-array@esm/index.mjs';
You can also import the following named exports from the package:
import { factory } from 'https://cdn.jsdelivr.net/gh/stdlib-js/utils-flatten-array@esm/index.mjs';
Flattens an array.
var arr = [ 1, [2, [3, [4, [ 5 ], 6], 7], 8], 9 ];
var out = flattenArray( arr );
// returns [ 1, 2, 3, 4, 5, 6, 7, 8, 9 ]
The function accepts the following options
:
- depth: maximum depth to flatten.
- copy:
boolean
indicating whether to deep copy array elements. Default:false
.
To flatten to a specified depth, set the depth
option.
var arr = [ 1, [2, [3, [4, [ 5 ], 6], 7], 8], 9 ];
var out = flattenArray( arr, {
'depth': 2
});
// returns [ 1, 2, 3, [4, [5], 6], 7, 8, 9 ]
var bool = ( arr[1][1][1] === out[3] );
// returns true
To deep copy array elements, set the copy
option to true
.
var arr = [ 1, [2, [3, [4, [ 5 ], 6], 7], 8], 9 ];
var out = flattenArray( arr, {
'depth': 2,
'copy': true
});
// returns [ 1, 2, 3, [4, [5], 6], 7, 8, 9 ]
var bool = ( arr[1][1][1] === out[3] );
// returns false
Returns a function
optimized for flattening arrays having specified dimensions.
var flatten = flattenArray.factory( [ 3, 3 ] );
var arr = [
[ 1, 2, 3 ],
[ 4, 5, 6 ],
[ 7, 8, 9 ]
];
var out = flatten( arr );
// returns [ 1, 2, 3, 4, 5, 6, 7, 8, 9 ]
arr = [
[ 11, 12, 13 ],
[ 14, 15, 16 ],
[ 17, 18, 19 ]
];
out = flatten( arr );
// returns [ 11, 12, 13, 14, 15, 16, 17, 18, 19 ]
The function accepts the following options
:
- copy:
boolean
indicating whether to deep copy array elements. Default:false
.
To deep copy array elements, set the copy
option to true
.
var flatten = flattenArray.factory( [ 3, 3 ], {
'copy': true
});
var arr = [
[ 1, 2, 3 ],
[ 4, { 'x': 5 }, 6 ],
[ 7, 8, 9 ]
];
var out = flatten( arr );
// returns [ 1, 2, 3, 4, {'x':5}, 6, 7, 8, 9 ]
var bool = ( arr[1][1] === out[4] );
// returns false
- A flatten
function
returned by the factory method does not validate that inputarrays
actually have the specified dimensions. - The
factory
method uses code evaluation, which may be problematic in browser contexts enforcing a strict content security policy (CSP).
<!DOCTYPE html>
<html lang="en">
<body>
<script type="module">
import flattenArray from 'https://cdn.jsdelivr.net/gh/stdlib-js/utils-flatten-array@esm/index.mjs';
function tensor( N, M, L ) {
var tmp1;
var tmp2;
var out;
var i;
var j;
var k;
out = [];
for ( i = 0; i < N; i++ ) {
tmp1 = [];
for ( j = 0; j < M; j++ ) {
tmp2 = [];
for ( k = 0; k < L; k++ ) {
tmp2.push( (M*L*i) + (j*L) + k + 1 );
}
tmp1.push( tmp2 );
}
out.push( tmp1 );
}
return out;
}
// Define array dimensions:
var N = 1000;
var M = 100;
var L = 10;
// Create a 3-dimensional nested array:
var data = tensor( N, M, L );
// Create a flattened (strided) array from a 3-dimensional nested array:
var arr = flattenArray( data );
// To access the data[4][20][2] element...
var xStride = M * L;
var yStride = L;
var zStride = 1;
var v = arr[ (4*xStride) + (20*yStride) + (2*zStride) ];
// returns 4203
var bool = ( data[4][20][2] === v );
// returns true
</script>
</body>
</html>
@stdlib/utils-flatten-object
: flatten an object.
This package is part of stdlib, a standard library with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2024. The Stdlib Authors.