This project analyzes transactional sales data from a CSV using SQLite and Python. It loads data into a database, performs SQL queries inside Python, and visualizes top products by revenue using Matplotlib and Seaborn.
This project analyzes transactional sales data using Python and SQLite. It demonstrates how to load data from a CSV, store it in a database, run SQL queries, and visualize key insights using Seaborn and Matplotlib.
- Import CSV data into SQLite using Pandas
- Run SQL queries inside Python
- Generate:
- Top 10 Products by Revenue (Bar Chart)
- Revenue by Region
- Revenue by Payment Method
- Monthly Revenue Trend (Optional)
- Save visualizations as
.png
files
Tech Stack:
- Python
- SQLite3
- Pandas
- Matplotlib
- Seaborn
- Jupyter Notebook
python : Step 1: Import libraries import sqlite3 import pandas as pd import matplotlib.pyplot as plt import seaborn as sns
Step 2: Load data and connect df = pd.read_csv("trend (1).csv") conn = sqlite3.connect("sales_data.db") df.to_sql("sales", conn, if_exists="replace", index=False)
Step 3: SQL query + visualization query = """ SELECT [Product Name] AS product, SUM([Units Sold]) AS total_units, SUM([Total Revenue]) AS total_revenue FROM sales GROUP BY [Product Name] ORDER BY total_revenue DESC LIMIT 10 """ top_products = pd.read_sql_query(query, conn)
Step 4: Plot sns.barplot(data=top_products, x="total_revenue", y="product", palette="Blues") plt.title("Top 10 Products by Revenue") plt.xlabel("Revenue") plt.ylabel("Product") plt.tight_layout() plt.savefig("top_10_products_revenue.png") plt.show() also used