-
-
Notifications
You must be signed in to change notification settings - Fork 103
Labels
AI BundleIssues & PRs about the AI integration bundleIssues & PRs about the AI integration bundleStoreIssues & PRs about the AI Store componentIssues & PRs about the AI Store component
Description
A common scenario is to
- load documents from a specific source (e.g. folder of PDFs, set of entities, URLs, ...)
- transform them (e.g. split into chunks, normalize language, summarize, ...)
- vectorize them with an embedding model
- store them in a vector store
- query for them incl. keeping track of original sources while retrieval
A configuration for this could for example look like this:
ai:
indexer:
my_indexer:
loader: 'service_id'
source: 'string' or ['array', 'of', 'string']
transformer:
- 'service_id'
- 'service_id'
embeddings:
class: 'Symfony\AI\Platform\Bridge\OpenAi\Embeddings'
name: 'text-embedding-ada-002'
store: 'ai.store.chroma_db.my_store'
And we could also add a command here:
$ bin/console ai:store:index my_indexer
This should sit on top / rework
Symfony\AI\Store\Document\LoaderInterface
Symfony\AI\Store\Document\TransformerInterface
Symfony\AI\Store\Document\Vectorizer
Symfony\AI\Store\Indexer
OskarStark
Metadata
Metadata
Assignees
Labels
AI BundleIssues & PRs about the AI integration bundleIssues & PRs about the AI integration bundleStoreIssues & PRs about the AI Store componentIssues & PRs about the AI Store component