Skip to content

t-asmal/mcp-test

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

2 Commits
Β 
Β 

Repository files navigation

MCP Test Repository

What is MCP (Model Context Protocol)?

Model Context Protocol (MCP) is an open standard that enables AI assistants to securely connect to external data sources and tools. Think of it as a universal interface that allows AI models to interact with your applications, databases, and services in a structured and secure way.

Key Concepts

πŸ”Œ Servers and Clients

  • MCP Servers expose functionality (tools, resources, prompts) to AI assistants
  • MCP Clients (like Claude, ChatGPT, or other AI applications) consume these capabilities
  • The protocol defines how they communicate securely

πŸ› οΈ Core Components

1. Tools

Functions that AI assistants can call to perform actions:

  • File operations (read, write, search)
  • API calls to external services
  • Database queries
  • System commands

2. Resources

Data sources that AI can read from:

  • Files and documents
  • Database records
  • API endpoints
  • Live data feeds

3. Prompts

Reusable prompt templates that can be:

  • Parameterized with dynamic values
  • Shared across different AI interactions
  • Standardized for consistent outputs

Benefits of MCP

πŸ”’ Security

  • Controlled access to sensitive data
  • Permission-based operations
  • Secure authentication mechanisms

πŸ”„ Interoperability

  • Works across different AI platforms
  • Standardized communication protocol
  • Vendor-agnostic implementation

πŸš€ Extensibility

  • Easy to add new tools and resources
  • Modular architecture
  • Community-driven ecosystem

Example Use Cases

πŸ“Š Data Analysis

AI Assistant + MCP Server β†’ Database
                         β†’ Spreadsheets
                         β†’ Analytics APIs

πŸ› οΈ Development Tools

AI Assistant + MCP Server β†’ Git repositories
                         β†’ CI/CD pipelines
                         β†’ Issue trackers

πŸ“ File Management

AI Assistant + MCP Server β†’ Local filesystem
                         β†’ Cloud storage
                         β†’ Document processing

Getting Started

1. Choose an MCP Client

  • Claude Desktop (Anthropic)
  • Continue (VS Code extension)
  • Custom implementations

2. Set up MCP Servers

  • Use existing community servers
  • Build custom servers for your needs
  • Configure authentication and permissions

3. Configure Connections

  • Define server endpoints
  • Set up authentication
  • Test connectivity

Architecture Overview

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    MCP Protocol    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                 β”‚ ←──────────────→   β”‚                 β”‚
β”‚   AI Assistant  β”‚                    β”‚   MCP Server    β”‚
β”‚   (Client)      β”‚                    β”‚                 β”‚
β”‚                 β”‚                    β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜                    β”‚  β”‚   Tools   β”‚  β”‚
                                       β”‚  β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€  β”‚
                                       β”‚  β”‚ Resources β”‚  β”‚
                                       β”‚  β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€  β”‚
                                       β”‚  β”‚  Prompts  β”‚  β”‚
                                       β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β”‚
                                       β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Real-World Examples

GitHub Integration

An MCP server that enables AI assistants to:

  • Read repository information
  • Create issues and pull requests
  • Search code across repositories
  • Manage project workflows

Database Connectivity

An MCP server that allows AI to:

  • Query databases safely
  • Generate reports
  • Perform data analysis
  • Execute approved operations

File System Access

An MCP server providing:

  • Secure file reading/writing
  • Directory navigation
  • Search capabilities
  • Backup operations

Community and Ecosystem

MCP is designed to foster a rich ecosystem where:

  • Developers can create specialized servers
  • Organizations can standardize AI integrations
  • Users benefit from interoperable tools
  • Security and privacy are maintained

Learn More

  • Official Specification: [MCP Protocol Documentation]
  • Community Servers: Explore existing implementations
  • SDK Libraries: Available in multiple programming languages
  • Best Practices: Security and implementation guides

This repository serves as a testing ground for MCP concepts and implementations. Feel free to explore, experiment, and contribute to the growing MCP ecosystem!

About

A test repository demonstrating Model Context Protocol (MCP) concepts

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published