Skip to content
Tarantool 1.6+ client for Go language
Go Lua
Branch: master
Clone or download
Pull request Compare This branch is 231 commits ahead of fl00r:master.
Latest commit 821fb5b Nov 10, 2019
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
multi Get node list from nodes (#81) Jul 24, 2019
queue fix typo (#84) Nov 10, 2019
.gitignore more gitignore Sep 26, 2016
LICENSE Add license (BSD-2 clause as for tarantool) Aug 3, 2017
README.md Get node list from nodes (#81) Jul 24, 2019
auth.go
client_tools.go
config.lua refix new index schema Oct 12, 2017
connection.go Typo fixed in Opts.Reconnect description Jun 4, 2019
connector.go multiconnections Nov 30, 2018
const.go ... Jun 12, 2017
deadline_io.go Added the ability to work with the tarantool via unix socket Mar 10, 2017
errors.go add documentation and client_tools. Nov 12, 2016
example_test.go refactor queue interface Apr 9, 2017
export_test.go add documentation and client_tools. Nov 12, 2016
request.go fix race condition on extremely small request timeouts (I hope) Jun 29, 2017
response.go ... Nov 12, 2016
schema.go refix new index schema Oct 12, 2017
smallbuf.go and gofmt for all Sep 26, 2016
tarantool_test.go

README.md

Client in Go for Tarantool 1.6+

The go-tarantool package has everything necessary for interfacing with Tarantool 1.6+.

The advantage of integrating Go with Tarantool, which is an application server plus a DBMS, is that Go programmers can handle databases and perform on-the-fly recompilations of embedded Lua routines, just as in C, with responses that are faster than other packages according to public benchmarks.

Table of contents

Installation

We assume that you have Tarantool version 1.6 and a modern Linux or BSD operating system.

You will need a current version of go, version 1.3 or later (use go version to check the version number). Do not use gccgo-go.

Note: If your go version is younger than 1.3, or if go is not installed, download the latest tarball from golang.org and say:

$ sudo tar -C /usr/local -xzf go1.7.5.linux-amd64.tar.gz
$ export PATH=$PATH:/usr/local/go/bin
$ export GOPATH="/usr/local/go/go-tarantool"
$ sudo chmod -R a+rwx /usr/local/go </pre>

The go-tarantool package is in tarantool/go-tarantool repository. To download and install, say:

$ go get github.com/tarantool/go-tarantool

This should bring source and binary files into subdirectories of /usr/local/go, making it possible to access by adding github.com/tarantool/go-tarantool in the import {...} section at the start of any Go program.

Hello World

In the "Connectors" chapter of the Tarantool manual, there is an explanation of a very short (18-line) program written in Go. Follow the instructions at the start of the "Connectors" chapter carefully. Then cut and paste the example into a file named example.go, and run it. You should see: nothing.

If that is what you see, then you have successfully installed go-tarantool and successfully executed a program that manipulated the contents of a Tarantool database.

API reference

Read the Tarantool manual to find descriptions of terms like "connect", "space", "index", and the requests for creating and manipulating database objects or Lua functions.

The source files for the requests library are:

  • connection.go for the Connect() function plus functions related to connecting, and
  • request.go for data-manipulation functions and Lua invocations.

See comments in those files for syntax details:

Ping
closeConnection
Select
Insert
Replace
Delete
Update
Upsert
Call
Call17
Eval

The supported requests have parameters and results equivalent to requests in the Tarantool manual. There are also Typed and Async versions of each data-manipulation function.

The source file for error-handling tools is errors.go, which has structure definitions and constants whose names are equivalent to names of errors that the Tarantool server returns.

Walking-through example in Go

We can now have a closer look at the example.go program and make some observations about what it does.

package main

import (
     "fmt"
     "github.com/tarantool/go-tarantool"
)

func main() {
   opts := tarantool.Opts{User: "guest"}
   conn, err := tarantool.Connect("127.0.0.1:3301", opts)
   // conn, err := tarantool.Connect("/path/to/tarantool.socket", opts)
   if err != nil {
       fmt.Println("Connection refused:", err)
   }
   resp, err := conn.Insert(999, []interface{}{99999, "BB"})
   if err != nil {
     fmt.Println("Error", err)
     fmt.Println("Code", resp.Code)
   }
}

Observation 1: the line "github.com/tarantool/go-tarantool" in the import(...) section brings in all Tarantool-related functions and structures.

Observation 2: the line beginning with "Opts :=" sets up the options for Connect(). In this example, there is only one thing in the structure, a user name. The structure can also contain:

  • Pass (password),
  • Timeout (maximum number of milliseconds to wait before giving up),
  • Reconnect (number of seconds to wait before retrying if a connection fails),
  • MaxReconnect (maximum number of times to retry).

Observation 3: the line containing "tarantool.Connect" is essential for beginning any session. There are two parameters:

  • a string with host:port format, and
  • the option structure that was set up earlier.

Observation 4: the err structure will be nil if there is no error, otherwise it will have a description which can be retrieved with err.Error().

Observation 5: the Insert request, like almost all requests, is preceded by "conn." which is the name of the object that was returned by Connect(). There are two parameters:

  • a space number (it could just as easily have been a space name), and
  • a tuple.

Help

To contact go-tarantool developers on any problems, create an issue at tarantool/go-tarantool.

The developers of the Tarantool server will also be happy to provide advice or receive feedback.

Usage

package main

import (
	"github.com/tarantool/go-tarantool"
	"log"
	"time"
)

func main() {
	spaceNo := uint32(512)
	indexNo := uint32(0)

	server := "127.0.0.1:3013"
	opts := tarantool.Opts{
		Timeout:       500 * time.Millisecond,
		Reconnect:     1 * time.Second,
		MaxReconnects: 3,
		User:          "test",
		Pass:          "test",
	}
	client, err := tarantool.Connect(server, opts)
	if err != nil {
		log.Fatalf("Failed to connect: %s", err.Error())
	}

	resp, err := client.Ping()
	log.Println(resp.Code)
	log.Println(resp.Data)
	log.Println(err)

	// insert new tuple { 10, 1 }
	resp, err = client.Insert(spaceNo, []interface{}{uint(10), 1})
    // or
	resp, err = client.Insert("test", []interface{}{uint(10), 1})
	log.Println("Insert")
	log.Println("Error", err)
	log.Println("Code", resp.Code)
	log.Println("Data", resp.Data)

	// delete tuple with primary key { 10 }
	resp, err = client.Delete(spaceNo, indexNo, []interface{}{uint(10)})
    // or
	resp, err = client.Delete("test", "primary", []interface{}{uint(10)})
	log.Println("Delete")
	log.Println("Error", err)
	log.Println("Code", resp.Code)
	log.Println("Data", resp.Data)

	// replace tuple with { 13, 1 }
	resp, err = client.Replace(spaceNo, []interface{}{uint(13), 1})
    // or
	resp, err = client.Replace("test", []interface{}{uint(13), 1})
	log.Println("Replace")
	log.Println("Error", err)
	log.Println("Code", resp.Code)
	log.Println("Data", resp.Data)

	// update tuple with primary key { 13 }, incrementing second field by 3
	resp, err = client.Update(spaceNo, indexNo, []interface{}{uint(13)}, []interface{}{[]interface{}{"+", 1, 3}})
    // or
	resp, err = client.Update("test", "primary", []interface{}{uint(13)}, []interface{}{[]interface{}{"+", 1, 3}})
	log.Println("Update")
	log.Println("Error", err)
	log.Println("Code", resp.Code)
	log.Println("Data", resp.Data)

	// insert tuple {15, 1} or increment second field by 1
	resp, err = client.Upsert(spaceNo, []interface{}{uint(15), 1}, []interface{}{[]interface{}{"+", 1, 1}})
    // or
	resp, err = client.Upsert("test", []interface{}{uint(15), 1}, []interface{}{[]interface{}{"+", 1, 1}})
	log.Println("Upsert")
	log.Println("Error", err)
	log.Println("Code", resp.Code)
	log.Println("Data", resp.Data)

	// select just one tuple with primay key { 15 }
	resp, err = client.Select(spaceNo, indexNo, 0, 1, tarantool.IterEq, []interface{}{uint(15)})
    // or
	resp, err = client.Select("test", "primary", 0, 1, tarantool.IterEq, []interface{}{uint(15)})
	log.Println("Select")
	log.Println("Error", err)
	log.Println("Code", resp.Code)
	log.Println("Data", resp.Data)

	// select tuples by condition ( primay key > 15 ) with offset 7 limit 5
	// BTREE index supposed
	resp, err = client.Select(spaceNo, indexNo, 7, 5, tarantool.IterGt, []interface{}{uint(15)})
    // or
	resp, err = client.Select("test", "primary", 7, 5, tarantool.IterGt, []interface{}{uint(15)})
	log.Println("Select")
	log.Println("Error", err)
	log.Println("Code", resp.Code)
	log.Println("Data", resp.Data)

	// call function 'func_name' with arguments
	resp, err = client.Call("func_name", []interface{}{1, 2, 3})
	log.Println("Call")
	log.Println("Error", err)
	log.Println("Code", resp.Code)
	log.Println("Data", resp.Data)

	// run raw lua code
	resp, err = client.Eval("return 1 + 2", []interface{}{})
	log.Println("Eval")
	log.Println("Error", err)
	log.Println("Code", resp.Code)
	log.Println("Data", resp.Data)
}

Schema

    // save Schema to local variable to avoid races
    schema := client.Schema

    // access Space objects by name or id
    space1 := schema.Spaces["some_space"]
    space2 := schema.SpacesById[20] // it's a map
    fmt.Printf("Space %d %s %s\n", space1.Id, space1.Name, space1.Engine)
    fmt.Printf("Space %d %d\n", space1.FieldsCount, space1.Temporary)

    // access index information by name or id
    index1 := space1.Indexes["some_index"]
    index2 := space1.IndexesById[2] // it's a map
    fmt.Printf("Index %d %s\n", index1.Id, index1.Name)

    // access index fields information by index
    indexField1 := index1.Fields[0] // it's a slice
    indexField2 := index1.Fields[1] // it's a slice
    fmt.Printf("IndexFields %s %s\n", indexField1.Name, indexField1.Type)

    // access space fields information by name or id (index)
    spaceField1 := space.Fields["some_field"]
    spaceField2 := space.FieldsById[3]
    fmt.Printf("SpaceField %s %s\n", spaceField1.Name, spaceField1.Type)

Custom (un)packing and typed selects and function calls

You can specify custom pack/unpack functions for your types. This will allow you to store complex structures inside a tuple and may speed up you requests.

Alternatively, you can just instruct the msgpack library to encode your structure as an array. This is safe "magic". It will be easier to implement than a custom packer/unpacker, but it will work slower.

import (
	"github.com/tarantool/go-tarantool"
	"gopkg.in/vmihailenco/msgpack.v2"
)

type Member struct {
	Name  string
	Nonce string
	Val   uint
}

type Tuple struct {
	Cid     uint
	Orig    string
	Members []Member
}

/* same effect in a "magic" way, but slower */
type Tuple2 struct {
	_msgpack struct{} `msgpack:",asArray"`

	Cid     uint
	Orig    string
	Members []Member
}

func (m *Member) EncodeMsgpack(e *msgpack.Encoder) error {
	if err := e.EncodeSliceLen(2); err != nil {
		return err
	}
	if err := e.EncodeString(m.Name); err != nil {
		return err
	}
	if err := e.EncodeUint(m.Val); err != nil {
		return err
	}
	return nil
}

func (m *Member) DecodeMsgpack(d *msgpack.Decoder) error {
	var err error
	var l int
	if l, err = d.DecodeSliceLen(); err != nil {
		return err
	}
	if l != 2 {
		return fmt.Errorf("array len doesn't match: %d", l)
	}
	if m.Name, err = d.DecodeString(); err != nil {
		return err
	}
	if m.Val, err = d.DecodeUint(); err != nil {
		return err
	}
	return nil
}

func (c *Tuple) EncodeMsgpack(e *msgpack.Encoder) error {
	if err := e.EncodeSliceLen(3); err != nil {
		return err
	}
	if err := e.EncodeUint(c.Cid); err != nil {
		return err
	}
	if err := e.EncodeString(c.Orig); err != nil {
		return err
	}
	if err := e.EncodeSliceLen(len(c.Members)); err != nil {
		return err
	}
	for _, m := range c.Members {
		e.Encode(m)
	}
	return nil
}

func (c *Tuple) DecodeMsgpack(d *msgpack.Decoder) error {
	var err error
	var l int
	if l, err = d.DecodeSliceLen(); err != nil {
		return err
	}
	if l != 3 {
		return fmt.Errorf("array len doesn't match: %d", l)
	}
	if c.Cid, err = d.DecodeUint(); err != nil {
		return err
	}
	if c.Orig, err = d.DecodeString(); err != nil {
		return err
	}
	if l, err = d.DecodeSliceLen(); err != nil {
		return err
	}
	c.Members = make([]Member, l)
	for i := 0; i < l; i++ {
		d.Decode(&c.Members[i])
	}
	return nil
}

func main() {
	// establish connection ...

	tuple := Tuple{777, "orig", []Member{{"lol", "", 1}, {"wut", "", 3}}}
	_, err = conn.Replace(spaceNo, tuple)  // NOTE: insert structure itself
	if err != nil {
		t.Errorf("Failed to insert: %s", err.Error())
		return
	}

	var tuples []Tuple
	err = conn.SelectTyped(spaceNo, indexNo, 0, 1, IterEq, []interface{}{777}, &tuples)
	if err != nil {
		t.Errorf("Failed to SelectTyped: %s", err.Error())
		return
	}

	// same result in a "magic" way
	var tuples2 []Tuple2
	err = conn.SelectTyped(spaceNo, indexNo, 0, 1, IterEq, []interface{}{777}, &tuples2)
	if err != nil {
		t.Errorf("Failed to SelectTyped: %s", err.Error())
		return
	}

	// call function 'func_name' returning a table of custom tuples
	var tuples3 []Tuple
	err = client.CallTyped("func_name", []interface{}{1, 2, 3}, &tuples3)
	if err != nil {
		t.Errorf("Failed to CallTyped: %s", err.Error())
		return
	}
}

/*
// Old way to register types
func init() {
	msgpack.Register(reflect.TypeOf(Tuple{}), encodeTuple, decodeTuple)
	msgpack.Register(reflect.TypeOf(Member{}), encodeMember, decodeMember)
}

func encodeMember(e *msgpack.Encoder, v reflect.Value) error {
	m := v.Interface().(Member)
	// same code as in EncodeMsgpack
	return nil
}

func decodeMember(d *msgpack.Decoder, v reflect.Value) error {
	m := v.Addr().Interface().(*Member)
	// same code as in DecodeMsgpack
	return nil
}

func encodeTuple(e *msgpack.Encoder, v reflect.Value) error {
	c := v.Interface().(Tuple)
	// same code as in EncodeMsgpack
	return nil
}

func decodeTuple(d *msgpack.Decoder, v reflect.Value) error {
	c := v.Addr().Interface().(*Tuple)
	// same code as in DecodeMsgpack
	return nil
}
*/

Options

  • Timeout - timeout for any particular request. If Timeout is zero request, any request may block infinitely.
  • Reconnect - timeout between reconnect attempts. If Reconnect is zero, no reconnects will be performed.
  • MaxReconnects - maximal number of reconnect failures; after that we give it up. If MaxReconnects is zero, the client will try to reconnect endlessly.
  • User - user name to log into Tarantool.
  • Pass - user password to log into Tarantool.

Working with queue

package main
import (
	"gopkg.in/vmihailenco/msgpack.v2"
	"github.com/tarantool/go-tarantool"
	"github.com/tarantool/go-tarantool/queue"
	"time"
	"fmt"
	"log"
)

type customData struct{
	Dummy bool
}

func (c *customData) DecodeMsgpack(d *msgpack.Decoder) error {
	var err error
	if c.Dummy, err = d.DecodeBool(); err != nil {
		return err
	}
	return nil
}

func (c *customData) EncodeMsgpack(e *msgpack.Encoder) error {
	return e.EncodeBool(c.Dummy)
}

func main() {
	opts := tarantool.Opts{
		Timeout: time.Second,
		Reconnect: time.Second,
		MaxReconnects: 5,
		User: "user",
		Pass: "pass",
		// ...
	}
	conn, err := tarantool.Connect("127.0.0.1:3301", opts)

	if err != nil {
		log.Fatalf("connection: %s", err)
		return
	}

	cfg := queue.Cfg{
		Temporary:  true,
		IfNotExists: true,
		Kind:       queue.FIFO,
		Opts: queue.Opts{
			Ttl:   10 * time.Second,
			Ttr:   5 * time.Second,
			Delay: 3 * time.Second,
			Pri:   1,
		},
	}

	que := queue.New(conn, "test_queue")
	if err = que.Create(cfg); err != nil {
		log.Fatalf("queue create: %s", err)
		return
	}

	// put data
	task, err := que.Put("test_data")
	if err != nil {
		log.Fatalf("put task: %s", err)
	}
	fmt.Println("Task id is", task.Id())

	// take data
	task, err = que.Take() //blocking operation
	if err != nil {
		log.Fatalf("take task: %s", err)
	}
	fmt.Println("Data is", task.Data())
	task.Ack()

	// take typed example
	putData := customData{}
	// put data
	task, err = que.Put(&putData)
	if err != nil {
		log.Fatalf("put typed task: %s", err)
	}
	fmt.Println("Task id is ", task.Id())

	takeData := customData{}
	//take data
	task, err = que.TakeTyped(&takeData) //blocking operation
	if err != nil {
		log.Fatalf("take take typed: %s", err)
	}
	fmt.Println("Data is ", takeData)
	// same data
	fmt.Println("Data is ", task.Data())

	task, err = que.Put([]int{1, 2, 3})
	task.Bury()

	task, err = que.TakeTimeout(2 * time.Second)
	if task == nil {
		fmt.Println("Task is nil")
	}

	que.Drop()
}

Features of the implementation:

  • If you use connection timeout and call TakeWithTimeout with parameter greater than the connection timeout then parameter reduced to it
  • If you use connection timeout and call Take then we return a error if we can not take task from queue in a time equal to the connection timeout

Multi connections

You can use multiple connections config with tatantool/multi.

Main features:

  • Check active connection with configurable time interval and on connection fail switch to next in pool.
  • Get addresses list from server and reconfigure to use in MultiConnection.

Additional options (configurable via ConnectWithOpts):

  • CheckTimeout - time interval to check for connection timeout and try to switch connection
  • ClusterDiscoveryTime - time interval to ask server for updated address list (works on with NodesGetFunctionName set)
  • NodesGetFunctionName - server lua function name to call for getting address list

Alternative connectors

You can’t perform that action at this time.