Skip to content

tejaswi199/multiple-linear-regression-using-sklearn

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 

Repository files navigation

import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression

df=pd.read_csv('/content/minihomeprices (2).csv') print(df.head()) print(df.info()) print(df.describe()) print(df.isna().sum()) df['bedrooms']=df['bedrooms'].fillna(df['bedrooms'].median()) plt.figure(figsize=(7,7)) plt.title("Bedroom wise price increases") plt.xlabel("Bedrooms") plt.ylabel("Price") sns.barplot(x='bedrooms',y='price',data=df) plt.show() plt.figure(figsize=(7,7)) sns.lmplot(x='bedrooms',y='price',data=df) plt.title("price and bedroom wise lineplot") plt.xlabel("House Bedrooms") plt.ylabel("House Price") plt.show() x=df.drop(['price'],axis=1) y=df['price'] x['bedrooms']=x['bedrooms'].astype('int64') mdl=LinearRegression() mdl.fit(x,y)

About

Implementation of multiple linear regression for house price prediction using sklearn

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published