-
Notifications
You must be signed in to change notification settings - Fork 45.5k
Description
Now i am using Ubuntu 16.04 and able to train object detection. however, after stop the training and run eval.py alone, it stucks at model .ckpt loading part: i do not understand why it loads .ckpt twice as the log below(Restoring parameters from). I have 3 titan x on my machine.
scopeserver@scopephotos:~/RaidDisk/DeepLearning/mwang/models/object_detection$ python eval.py --logtostderr --pipeline_config_path=/home/scopeserver/RaidDisk/DeepLearning/mwang/models/object_detection/samples/configs/faster_rcnn_resnet101_fashion.config --checkpoint_dir=/home/scopeserver/RaidDisk/DeepLearning/mwang/models/object_detection/checkpoint --eval_dir=/home/scopeserver/RaidDisk/DeepLearning/mwang/models/object_detection/eval/
INFO:tensorflow:Scale of 0 disables regularizer.
INFO:tensorflow:Scale of 0 disables regularizer.
INFO:tensorflow:Scale of 0 disables regularizer.
INFO:tensorflow:Scale of 0 disables regularizer.
INFO:tensorflow:Scale of 0 disables regularizer.
INFO:tensorflow:Scale of 0 disables regularizer.
INFO:tensorflow:Scale of 0 disables regularizer.
INFO:tensorflow:Scale of 0 disables regularizer.
2017-06-23 15:19:27.029181: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
2017-06-23 15:19:27.029220: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
2017-06-23 15:19:27.029235: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2017-06-23 15:19:27.029247: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2017-06-23 15:19:27.029259: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
2017-06-23 15:19:27.466931: I tensorflow/core/common_runtime/gpu/gpu_device.cc:887] Found device 0 with properties:
name: GeForce GTX TITAN X
major: 5 minor: 2 memoryClockRate (GHz) 1.2155
pciBusID 0000:0a:00.0
Total memory: 11.92GiB
Free memory: 11.81GiB
2017-06-23 15:19:27.467000: W tensorflow/stream_executor/cuda/cuda_driver.cc:485] creating context when one is currently active; existing: 0x6f46570
2017-06-23 15:19:27.738230: I tensorflow/core/common_runtime/gpu/gpu_device.cc:887] Found device 1 with properties:
name: GeForce GTX TITAN X
major: 5 minor: 2 memoryClockRate (GHz) 1.2155
pciBusID 0000:09:00.0
Total memory: 11.92GiB
Free memory: 11.81GiB
2017-06-23 15:19:27.738311: W tensorflow/stream_executor/cuda/cuda_driver.cc:485] creating context when one is currently active; existing: 0x7b90680
2017-06-23 15:19:28.006602: I tensorflow/core/common_runtime/gpu/gpu_device.cc:887] Found device 2 with properties:
name: GeForce GTX TITAN X
major: 5 minor: 2 memoryClockRate (GHz) 1.2155
pciBusID 0000:05:00.0
Total memory: 11.92GiB
Free memory: 11.53GiB
2017-06-23 15:19:28.008184: I tensorflow/core/common_runtime/gpu/gpu_device.cc:908] DMA: 0 1 2
2017-06-23 15:19:28.008198: I tensorflow/core/common_runtime/gpu/gpu_device.cc:918] 0: Y Y Y
2017-06-23 15:19:28.008205: I tensorflow/core/common_runtime/gpu/gpu_device.cc:918] 1: Y Y Y
2017-06-23 15:19:28.008211: I tensorflow/core/common_runtime/gpu/gpu_device.cc:918] 2: Y Y Y
2017-06-23 15:19:28.008226: I tensorflow/core/common_runtime/gpu/gpu_device.cc:977] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX TITAN X, pci bus id: 0000:0a:00.0)
2017-06-23 15:19:28.008234: I tensorflow/core/common_runtime/gpu/gpu_device.cc:977] Creating TensorFlow device (/gpu:1) -> (device: 1, name: GeForce GTX TITAN X, pci bus id: 0000:09:00.0)
2017-06-23 15:19:28.008241: I tensorflow/core/common_runtime/gpu/gpu_device.cc:977] Creating TensorFlow device (/gpu:2) -> (device: 2, name: GeForce GTX TITAN X, pci bus id: 0000:05:00.0)
INFO:tensorflow:Restoring parameters from /home/scopeserver/RaidDisk/DeepLearning/mwang/models/object_detection/checkpoint/model.ckpt-17287
INFO:tensorflow:Restoring parameters from /home/scopeserver/RaidDisk/DeepLearning/mwang/models/object_detection/checkpoint/model.ckpt-17287