Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion research/adversarial_text/graphs.py
Original file line number Diff line number Diff line change
Expand Up @@ -116,7 +116,7 @@ class VatxtModel(object):
"""

def __init__(self, cl_logits_input_dim=None):
self.global_step = tf.contrib.framework.get_or_create_global_step()
self.global_step = tf.train.get_or_create_global_step()
self.vocab_freqs = _get_vocab_freqs()

# Cache VatxtInput objects
Expand Down
2 changes: 1 addition & 1 deletion research/learning_to_remember_rare_events/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -137,7 +137,7 @@ def __init__(self, input_dim, output_dim, rep_dim, memory_size, vocab_size,
self.memory = self.get_memory()
self.classifier = self.get_classifier()

self.global_step = tf.contrib.framework.get_or_create_global_step()
self.global_step = tf.train.get_or_create_global_step()

def get_embedder(self):
return LeNet(int(self.input_dim ** 0.5), 1, self.rep_dim)
Expand Down
4 changes: 2 additions & 2 deletions research/pcl_rl/trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -364,7 +364,7 @@ def init_fn(sess, saver):

if FLAGS.supervisor:
with tf.device(tf.ReplicaDeviceSetter(FLAGS.ps_tasks, merge_devices=True)):
self.global_step = tf.contrib.framework.get_or_create_global_step()
self.global_step = tf.train.get_or_create_global_step()
tf.set_random_seed(FLAGS.tf_seed)
self.controller = self.get_controller()
self.model = self.controller.model
Expand All @@ -382,7 +382,7 @@ def init_fn(sess, saver):
sess = sv.PrepareSession(FLAGS.master)
else:
tf.set_random_seed(FLAGS.tf_seed)
self.global_step = tf.contrib.framework.get_or_create_global_step()
self.global_step = tf.train.get_or_create_global_step()
self.controller = self.get_controller()
self.model = self.controller.model
self.controller.setup()
Expand Down
2 changes: 1 addition & 1 deletion research/resnet/resnet_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -56,7 +56,7 @@ def __init__(self, hps, images, labels, mode):

def build_graph(self):
"""Build a whole graph for the model."""
self.global_step = tf.contrib.framework.get_or_create_global_step()
self.global_step = tf.train.get_or_create_global_step()
self._build_model()
if self.mode == 'train':
self._build_train_op()
Expand Down
3 changes: 2 additions & 1 deletion research/slim/nets/nasnet/nasnet_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -411,8 +411,9 @@ def _apply_drop_path(self, net):
tf.summary.scalar('layer_ratio', layer_ratio)
drop_path_keep_prob = 1 - layer_ratio * (1 - drop_path_keep_prob)
# Decrease the keep probability over time
current_step = tf.cast(tf.contrib.framework.get_or_create_global_step(),
current_step = tf.cast(tf.train.get_or_create_global_step(),
tf.float32)
print("HERE")
drop_path_burn_in_steps = self._total_training_steps
current_ratio = (
current_step / drop_path_burn_in_steps)
Expand Down
2 changes: 1 addition & 1 deletion tutorials/image/cifar10/cifar10_train.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,7 +61,7 @@
def train():
"""Train CIFAR-10 for a number of steps."""
with tf.Graph().as_default():
global_step = tf.contrib.framework.get_or_create_global_step()
global_step = tf.train.get_or_create_global_step()

# Get images and labels for CIFAR-10.
# Force input pipeline to CPU:0 to avoid operations sometimes ending up on
Expand Down
2 changes: 1 addition & 1 deletion tutorials/rnn/ptb/ptb_word_lm.py
Original file line number Diff line number Diff line change
Expand Up @@ -162,7 +162,7 @@ def __init__(self, is_training, config, input_):
optimizer = tf.train.GradientDescentOptimizer(self._lr)
self._train_op = optimizer.apply_gradients(
zip(grads, tvars),
global_step=tf.contrib.framework.get_or_create_global_step())
global_step=tf.train.get_or_create_global_step())

self._new_lr = tf.placeholder(
tf.float32, shape=[], name="new_learning_rate")
Expand Down