-
Notifications
You must be signed in to change notification settings - Fork 45.5k
update offline metrics for Open Images dataset. #2825
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,55 @@ | ||
# Tensorflow Object Detection API: main runnables. | ||
|
||
package( | ||
default_visibility = ["//visibility:public"], | ||
) | ||
|
||
licenses(["notice"]) | ||
|
||
# Apache 2.0 | ||
|
||
py_binary( | ||
name = "offline_eval_map_corloc", | ||
srcs = [ | ||
"offline_eval_map_corloc.py", | ||
], | ||
deps = [ | ||
":tf_example_parser", | ||
"//tensorflow_models/object_detection:evaluator", | ||
"//tensorflow_models/object_detection/builders:input_reader_builder", | ||
"//tensorflow_models/object_detection/core:standard_fields", | ||
"//tensorflow_models/object_detection/utils:config_util", | ||
"//tensorflow_models/object_detection/utils:label_map_util", | ||
], | ||
) | ||
|
||
py_test( | ||
name = "offline_eval_map_corloc_test", | ||
srcs = [ | ||
"offline_eval_map_corloc_test.py", | ||
], | ||
deps = [ | ||
":offline_eval_map_corloc", | ||
"//tensorflow", | ||
], | ||
) | ||
|
||
py_library( | ||
name = "tf_example_parser", | ||
srcs = ["tf_example_parser.py"], | ||
deps = [ | ||
"//tensorflow", | ||
"//tensorflow_models/object_detection/core:data_parser", | ||
"//tensorflow_models/object_detection/core:standard_fields", | ||
], | ||
) | ||
|
||
py_test( | ||
name = "tf_example_parser_test", | ||
srcs = ["tf_example_parser_test.py"], | ||
deps = [ | ||
":tf_example_parser", | ||
"//tensorflow", | ||
"//tensorflow_models/object_detection/core:standard_fields", | ||
], | ||
) |
173 changes: 173 additions & 0 deletions
173
research/object_detection/metrics/offline_eval_map_corloc.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,173 @@ | ||
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================== | ||
r"""Evaluation executable for detection data. | ||
|
||
This executable evaluates precomputed detections produced by a detection | ||
model and writes the evaluation results into csv file metrics.csv, stored | ||
in the directory, specified by --eval_dir. | ||
|
||
The evaluation metrics set is supplied in object_detection.protos.EvalConfig | ||
in metrics_set field. | ||
Currently two set of metrics are supported: | ||
- pascal_voc_metrics: standard PASCAL VOC 2007 metric | ||
- open_images_metrics: Open Image V2 metric | ||
All other field of object_detection.protos.EvalConfig are ignored. | ||
|
||
Example usage: | ||
./compute_metrics \ | ||
--eval_dir=path/to/eval_dir \ | ||
--eval_config_path=path/to/evaluation/configuration/file \ | ||
--input_config_path=path/to/input/configuration/file | ||
""" | ||
import csv | ||
import os | ||
import re | ||
import tensorflow as tf | ||
|
||
from object_detection import evaluator | ||
from object_detection.core import standard_fields | ||
from object_detection.metrics import tf_example_parser | ||
from object_detection.utils import config_util | ||
from object_detection.utils import label_map_util | ||
|
||
flags = tf.app.flags | ||
tf.logging.set_verbosity(tf.logging.INFO) | ||
|
||
flags.DEFINE_string('eval_dir', None, 'Directory to write eval summaries to.') | ||
flags.DEFINE_string('eval_config_path', None, | ||
'Path to an eval_pb2.EvalConfig config file.') | ||
flags.DEFINE_string('input_config_path', None, | ||
'Path to an eval_pb2.InputConfig config file.') | ||
|
||
FLAGS = flags.FLAGS | ||
|
||
|
||
def _generate_sharded_filenames(filename): | ||
m = re.search(r'@(\d{1,})', filename) | ||
if m: | ||
num_shards = int(m.group(1)) | ||
return [ | ||
re.sub(r'@(\d{1,})', '-%.5d-of-%.5d' % (i, num_shards), filename) | ||
for i in range(num_shards) | ||
] | ||
else: | ||
return [filename] | ||
|
||
|
||
def _generate_filenames(filenames): | ||
result = [] | ||
for filename in filenames: | ||
result += _generate_sharded_filenames(filename) | ||
return result | ||
|
||
|
||
def read_data_and_evaluate(input_config, eval_config): | ||
"""Reads pre-computed object detections and groundtruth from tf_record. | ||
|
||
Args: | ||
input_config: input config proto of type | ||
object_detection.protos.InputReader. | ||
eval_config: evaluation config proto of type | ||
object_detection.protos.EvalConfig. | ||
|
||
Returns: | ||
Evaluated detections metrics. | ||
|
||
Raises: | ||
ValueError: if input_reader type is not supported or metric type is unknown. | ||
""" | ||
if input_config.WhichOneof('input_reader') == 'tf_record_input_reader': | ||
input_paths = input_config.tf_record_input_reader.input_path | ||
|
||
label_map = label_map_util.load_labelmap(input_config.label_map_path) | ||
max_num_classes = max([item.id for item in label_map.item]) | ||
categories = label_map_util.convert_label_map_to_categories( | ||
label_map, max_num_classes) | ||
|
||
object_detection_evaluators = evaluator.get_evaluators( | ||
eval_config, categories) | ||
# Support a single evaluator | ||
object_detection_evaluator = object_detection_evaluators[0] | ||
|
||
skipped_images = 0 | ||
processed_images = 0 | ||
for input_path in _generate_filenames(input_paths): | ||
tf.logging.info('Processing file: {0}'.format(input_path)) | ||
|
||
record_iterator = tf.python_io.tf_record_iterator(path=input_path) | ||
data_parser = tf_example_parser.TfExampleDetectionAndGTParser() | ||
|
||
for string_record in record_iterator: | ||
tf.logging.log_every_n(tf.logging.INFO, 'Processed %d images...', 1000, | ||
processed_images) | ||
processed_images += 1 | ||
|
||
example = tf.train.Example() | ||
example.ParseFromString(string_record) | ||
decoded_dict = data_parser.parse(example) | ||
|
||
if decoded_dict: | ||
object_detection_evaluator.add_single_ground_truth_image_info( | ||
decoded_dict[standard_fields.DetectionResultFields.key], | ||
decoded_dict) | ||
object_detection_evaluator.add_single_detected_image_info( | ||
decoded_dict[standard_fields.DetectionResultFields.key], | ||
decoded_dict) | ||
else: | ||
skipped_images += 1 | ||
tf.logging.info('Skipped images: {0}'.format(skipped_images)) | ||
|
||
return object_detection_evaluator.evaluate() | ||
|
||
raise ValueError('Unsupported input_reader_config.') | ||
|
||
|
||
def write_metrics(metrics, output_dir): | ||
"""Write metrics to the output directory. | ||
|
||
Args: | ||
metrics: A dictionary containing metric names and values. | ||
output_dir: Directory to write metrics to. | ||
""" | ||
tf.logging.info('Writing metrics.') | ||
|
||
with open(os.path.join(output_dir, 'metrics.csv'), 'w') as csvfile: | ||
metrics_writer = csv.writer(csvfile, delimiter=',') | ||
for metric_name, metric_value in metrics.items(): | ||
metrics_writer.writerow([metric_name, str(metric_value)]) | ||
|
||
|
||
def main(argv): | ||
del argv | ||
required_flags = ['input_config_path', 'eval_config_path', 'eval_dir'] | ||
for flag_name in required_flags: | ||
if not getattr(FLAGS, flag_name): | ||
raise ValueError('Flag --{} is required'.format(flag_name)) | ||
|
||
configs = config_util.get_configs_from_multiple_files( | ||
eval_input_config_path=FLAGS.input_config_path, | ||
eval_config_path=FLAGS.eval_config_path) | ||
|
||
eval_config = configs['eval_config'] | ||
input_config = configs['eval_input_config'] | ||
|
||
metrics = read_data_and_evaluate(input_config, eval_config) | ||
|
||
# Save metrics | ||
write_metrics(metrics, FLAGS.eval_dir) | ||
|
||
|
||
if __name__ == '__main__': | ||
tf.app.run(main) |
58 changes: 58 additions & 0 deletions
58
research/object_detection/metrics/offline_eval_map_corloc_test.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,58 @@ | ||
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================== | ||
"""Tests for utilities in offline_eval_map_corloc binary.""" | ||
|
||
import tensorflow as tf | ||
|
||
from object_detection.metrics import offline_eval_map_corloc as offline_eval | ||
|
||
|
||
class OfflineEvalMapCorlocTest(tf.test.TestCase): | ||
|
||
def test_generateShardedFilenames(self): | ||
test_filename = '/path/to/file' | ||
result = offline_eval._generate_sharded_filenames(test_filename) | ||
self.assertEqual(result, [test_filename]) | ||
|
||
test_filename = '/path/to/file-00000-of-00050' | ||
result = offline_eval._generate_sharded_filenames(test_filename) | ||
self.assertEqual(result, [test_filename]) | ||
|
||
result = offline_eval._generate_sharded_filenames('/path/to/@3.sst') | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. update extensions to 'record' |
||
self.assertEqual(result, [ | ||
'/path/to/-00000-of-00003.sst', '/path/to/-00001-of-00003.sst', | ||
'/path/to/-00002-of-00003.sst' | ||
]) | ||
|
||
result = offline_eval._generate_sharded_filenames('/path/to/abc@3') | ||
self.assertEqual(result, [ | ||
'/path/to/abc-00000-of-00003', '/path/to/abc-00001-of-00003', | ||
'/path/to/abc-00002-of-00003' | ||
]) | ||
|
||
result = offline_eval._generate_sharded_filenames('/path/to/@1') | ||
self.assertEqual(result, ['/path/to/-00000-of-00001']) | ||
|
||
def test_generateFilenames(self): | ||
test_filenames = ['/path/to/file', '/path/to/@3.sst'] | ||
result = offline_eval._generate_filenames(test_filenames) | ||
self.assertEqual(result, [ | ||
'/path/to/file', '/path/to/-00000-of-00003.sst', | ||
'/path/to/-00001-of-00003.sst', '/path/to/-00002-of-00003.sst' | ||
]) | ||
|
||
|
||
if __name__ == '__main__': | ||
tf.test.main() |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
update example command line