-
Notifications
You must be signed in to change notification settings - Fork 45.5k
Add session hook for benchmark metric logging. #3672
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
Show all changes
5 commits
Select commit
Hold shift + click to select a range
bf93f76
Add session hook for benchmark metric logging.
qlzh727 595629a
Update metric_hook to use LoggingTensorHook as base.
qlzh727 c5c2f23
Address review comment.
qlzh727 1e52ca6
Update tests for py3.
qlzh727 abe297e
Fix lint error
qlzh727 File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,106 @@ | ||
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================== | ||
"""Session hook for logging benchmark metric.""" | ||
|
||
from __future__ import absolute_import | ||
from __future__ import division | ||
from __future__ import print_function | ||
|
||
import tensorflow as tf | ||
|
||
from official.utils.logging import logger | ||
|
||
|
||
class LoggingMetricHook(tf.train.LoggingTensorHook): | ||
"""Hook to log benchmark metric information. | ||
|
||
This hook is very similar as tf.train.LoggingTensorHook, which logs given | ||
tensors every N local steps, every N seconds, or at the end. The metric | ||
information will be logged to given log_dir or via metric_logger in JSON | ||
format, which can be consumed by data analysis pipeline later. | ||
|
||
Note that if `at_end` is True, `tensors` should not include any tensor | ||
whose evaluation produces a side effect such as consuming additional inputs. | ||
""" | ||
|
||
def __init__(self, tensors, log_dir=None, metric_logger=None, | ||
every_n_iter=None, every_n_secs=None, at_end=False): | ||
"""Initializer for LoggingMetricHook. | ||
|
||
Args: | ||
tensors: `dict` that maps string-valued tags to tensors/tensor names, | ||
or `iterable` of tensors/tensor names. | ||
log_dir: `string`, directory path that metric hook should write log to. | ||
metric_logger: instance of `BenchmarkLogger`, the benchmark logger that | ||
hook should use to write the log. Exactly one of the `log_dir` and | ||
`metric_logger` should be provided. | ||
every_n_iter: `int`, print the values of `tensors` once every N local | ||
steps taken on the current worker. | ||
every_n_secs: `int` or `float`, print the values of `tensors` once every N | ||
seconds. Exactly one of `every_n_iter` and `every_n_secs` should be | ||
provided. | ||
at_end: `bool` specifying whether to print the values of `tensors` at the | ||
end of the run. | ||
|
||
Raises: | ||
ValueError: | ||
1. `every_n_iter` is non-positive, or | ||
2. Exactly one of every_n_iter and every_n_secs should be provided. | ||
3. Exactly one of log_dir and metric_logger should be provided. | ||
""" | ||
super(LoggingMetricHook, self).__init__( | ||
tensors=tensors, | ||
every_n_iter=every_n_iter, | ||
every_n_secs=every_n_secs, | ||
at_end=at_end) | ||
|
||
if (log_dir is None) == (metric_logger is None): | ||
raise ValueError( | ||
"exactly one of log_dir and metric_logger should be provided.") | ||
|
||
if log_dir is not None: | ||
self._logger = logger.BenchmarkLogger(log_dir) | ||
else: | ||
self._logger = metric_logger | ||
|
||
def begin(self): | ||
super(LoggingMetricHook, self).begin() | ||
self._global_step_tensor = tf.train.get_global_step() | ||
if self._global_step_tensor is None: | ||
raise RuntimeError( | ||
"Global step should be created to use LoggingMetricHook.") | ||
if self._global_step_tensor.name not in self._current_tensors: | ||
self._current_tensors[self._global_step_tensor.name] = ( | ||
self._global_step_tensor) | ||
|
||
def after_run(self, unused_run_context, run_values): | ||
# should_trigger is a internal state that populated at before_run, and it is | ||
# using self_timer to determine whether it should trigger. | ||
if self._should_trigger: | ||
self._log_metric(run_values.results) | ||
|
||
self._iter_count += 1 | ||
|
||
def end(self, session): | ||
if self._log_at_end: | ||
values = session.run(self._current_tensors) | ||
self._log_metric(values) | ||
|
||
def _log_metric(self, tensor_values): | ||
self._timer.update_last_triggered_step(self._iter_count) | ||
global_step = tensor_values[self._global_step_tensor.name] | ||
# self._tag_order is populated during the init of LoggingTensorHook | ||
for tag in self._tag_order: | ||
self._logger.log_metric(tag, tensor_values[tag], global_step=global_step) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,232 @@ | ||
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================== | ||
"""Tests for metric_hook.""" | ||
|
||
from __future__ import absolute_import | ||
from __future__ import division | ||
from __future__ import print_function | ||
|
||
import tempfile | ||
import time | ||
|
||
import tensorflow as tf | ||
from tensorflow.python.training import monitored_session | ||
|
||
from official.utils.logging import metric_hook | ||
|
||
|
||
class LoggingMetricHookTest(tf.test.TestCase): | ||
|
||
def setUp(self): | ||
super(LoggingMetricHookTest, self).setUp() | ||
|
||
class MockMetricLogger(object): | ||
def __init__(self): | ||
self.logged_metric = [] | ||
|
||
def log_metric(self, name, value, unit=None, global_step=None, | ||
extras=None): | ||
self.logged_metric.append({ | ||
"name": name, | ||
"value": float(value), | ||
"unit": unit, | ||
"global_step": global_step, | ||
"extras": extras}) | ||
|
||
self._log_dir = tempfile.mkdtemp(dir=self.get_temp_dir()) | ||
self._logger = MockMetricLogger() | ||
|
||
def tearDown(self): | ||
super(LoggingMetricHookTest, self).tearDown() | ||
tf.gfile.DeleteRecursively(self.get_temp_dir()) | ||
|
||
def test_illegal_args(self): | ||
with self.assertRaisesRegexp(ValueError, 'nvalid every_n_iter'): | ||
metric_hook.LoggingMetricHook(tensors=['t'], every_n_iter=0) | ||
with self.assertRaisesRegexp(ValueError, 'nvalid every_n_iter'): | ||
metric_hook.LoggingMetricHook(tensors=['t'], every_n_iter=-10) | ||
with self.assertRaisesRegexp(ValueError, 'xactly one of'): | ||
metric_hook.LoggingMetricHook( | ||
tensors=['t'], every_n_iter=5, every_n_secs=5) | ||
with self.assertRaisesRegexp(ValueError, 'xactly one of'): | ||
metric_hook.LoggingMetricHook(tensors=['t']) | ||
with self.assertRaisesRegexp(ValueError, 'log_dir and metric_logger'): | ||
metric_hook.LoggingMetricHook(tensors=['t'], every_n_iter=5) | ||
with self.assertRaisesRegexp(ValueError, 'log_dir and metric_logger'): | ||
metric_hook.LoggingMetricHook( | ||
tensors=['t'], every_n_iter=5, log_dir=self._log_dir, | ||
metric_logger=self._logger) | ||
|
||
def test_print_at_end_only(self): | ||
with tf.Graph().as_default(), tf.Session() as sess: | ||
tf.train.get_or_create_global_step() | ||
t = tf.constant(42.0, name='foo') | ||
train_op = tf.constant(3) | ||
hook = metric_hook.LoggingMetricHook( | ||
tensors=[t.name], at_end=True, metric_logger=self._logger) | ||
hook.begin() | ||
mon_sess = monitored_session._HookedSession(sess, [hook]) | ||
sess.run(tf.global_variables_initializer()) | ||
|
||
for _ in range(3): | ||
mon_sess.run(train_op) | ||
self.assertEqual(self._logger.logged_metric, []) | ||
|
||
hook.end(sess) | ||
self.assertEqual(len(self._logger.logged_metric), 1) | ||
metric = self._logger.logged_metric[0] | ||
self.assertRegexpMatches(metric["name"], "foo") | ||
self.assertEqual(metric["value"], 42.0) | ||
self.assertEqual(metric["unit"], None) | ||
self.assertEqual(metric["global_step"], 0) | ||
|
||
def test_global_step_not_found(self): | ||
with tf.Graph().as_default(), tf.Session() as sess: | ||
t = tf.constant(42.0, name='foo') | ||
hook = metric_hook.LoggingMetricHook( | ||
tensors=[t.name], at_end=True, metric_logger=self._logger) | ||
|
||
with self.assertRaisesRegexp( | ||
RuntimeError, 'should be created to use LoggingMetricHook.'): | ||
hook.begin() | ||
|
||
def test_log_tensors(self): | ||
with tf.Graph().as_default(), tf.Session() as sess: | ||
tf.train.get_or_create_global_step() | ||
t1 = tf.constant(42.0, name='foo') | ||
t2 = tf.constant(43.0, name='bar') | ||
train_op = tf.constant(3) | ||
hook = metric_hook.LoggingMetricHook( | ||
tensors=[t1, t2], at_end=True, metric_logger=self._logger) | ||
hook.begin() | ||
mon_sess = monitored_session._HookedSession(sess, [hook]) | ||
sess.run(tf.global_variables_initializer()) | ||
|
||
for _ in range(3): | ||
mon_sess.run(train_op) | ||
self.assertEqual(self._logger.logged_metric, []) | ||
|
||
hook.end(sess) | ||
self.assertEqual(len(self._logger.logged_metric), 2) | ||
metric1 = self._logger.logged_metric[0] | ||
self.assertRegexpMatches(str(metric1["name"]), "foo") | ||
self.assertEqual(metric1["value"], 42.0) | ||
self.assertEqual(metric1["unit"], None) | ||
self.assertEqual(metric1["global_step"], 0) | ||
|
||
metric2 = self._logger.logged_metric[1] | ||
self.assertRegexpMatches(str(metric2["name"]), "bar") | ||
self.assertEqual(metric2["value"], 43.0) | ||
self.assertEqual(metric2["unit"], None) | ||
self.assertEqual(metric2["global_step"], 0) | ||
|
||
def _validate_print_every_n_steps(self, sess, at_end): | ||
t = tf.constant(42.0, name='foo') | ||
|
||
train_op = tf.constant(3) | ||
hook = metric_hook.LoggingMetricHook( | ||
tensors=[t.name], every_n_iter=10, at_end=at_end, | ||
metric_logger=self._logger) | ||
hook.begin() | ||
mon_sess = monitored_session._HookedSession(sess, [hook]) | ||
sess.run(tf.global_variables_initializer()) | ||
mon_sess.run(train_op) | ||
self.assertRegexpMatches(str(self._logger.logged_metric), t.name) | ||
for _ in range(3): | ||
self._logger.logged_metric = [] | ||
for _ in range(9): | ||
mon_sess.run(train_op) | ||
# assertNotRegexpMatches is not supported by python 3.1 and later | ||
self.assertEqual(str(self._logger.logged_metric).find(t.name), -1) | ||
mon_sess.run(train_op) | ||
self.assertRegexpMatches(str(self._logger.logged_metric), t.name) | ||
|
||
# Add additional run to verify proper reset when called multiple times. | ||
self._logger.logged_metric = [] | ||
mon_sess.run(train_op) | ||
# assertNotRegexpMatches is not supported by python 3.1 and later | ||
self.assertEqual(str(self._logger.logged_metric).find(t.name), -1) | ||
|
||
self._logger.logged_metric = [] | ||
hook.end(sess) | ||
if at_end: | ||
self.assertRegexpMatches(str(self._logger.logged_metric), t.name) | ||
else: | ||
# assertNotRegexpMatches is not supported by python 3.1 and later | ||
self.assertEqual(str(self._logger.logged_metric).find(t.name), -1) | ||
|
||
def test_print_every_n_steps(self): | ||
with tf.Graph().as_default(), tf.Session() as sess: | ||
tf.train.get_or_create_global_step() | ||
self._validate_print_every_n_steps(sess, at_end=False) | ||
# Verify proper reset. | ||
self._validate_print_every_n_steps(sess, at_end=False) | ||
|
||
def test_print_every_n_steps_and_end(self): | ||
with tf.Graph().as_default(), tf.Session() as sess: | ||
tf.train.get_or_create_global_step() | ||
self._validate_print_every_n_steps(sess, at_end=True) | ||
# Verify proper reset. | ||
self._validate_print_every_n_steps(sess, at_end=True) | ||
|
||
def _validate_print_every_n_secs(self, sess, at_end): | ||
t = tf.constant(42.0, name='foo') | ||
train_op = tf.constant(3) | ||
|
||
hook = metric_hook.LoggingMetricHook( | ||
tensors=[t.name], every_n_secs=1.0, at_end=at_end, | ||
metric_logger=self._logger) | ||
hook.begin() | ||
mon_sess = monitored_session._HookedSession(sess, [hook]) | ||
sess.run(tf.global_variables_initializer()) | ||
|
||
mon_sess.run(train_op) | ||
self.assertRegexpMatches(str(self._logger.logged_metric), t.name) | ||
|
||
# assertNotRegexpMatches is not supported by python 3.1 and later | ||
self._logger.logged_metric = [] | ||
mon_sess.run(train_op) | ||
self.assertEqual(str(self._logger.logged_metric).find(t.name), -1) | ||
time.sleep(1.0) | ||
|
||
self._logger.logged_metric = [] | ||
mon_sess.run(train_op) | ||
self.assertRegexpMatches(str(self._logger.logged_metric), t.name) | ||
|
||
self._logger.logged_metric = [] | ||
hook.end(sess) | ||
if at_end: | ||
self.assertRegexpMatches(str(self._logger.logged_metric), t.name) | ||
else: | ||
# assertNotRegexpMatches is not supported by python 3.1 and later | ||
self.assertEqual(str(self._logger.logged_metric).find(t.name), -1) | ||
|
||
def test_print_every_n_secs(self): | ||
with tf.Graph().as_default(), tf.Session() as sess: | ||
tf.train.get_or_create_global_step() | ||
self._validate_print_every_n_secs(sess, at_end=False) | ||
# Verify proper reset. | ||
self._validate_print_every_n_secs(sess, at_end=False) | ||
|
||
def test_print_every_n_secs_and_end(self): | ||
with tf.Graph().as_default(), tf.Session() as sess: | ||
tf.train.get_or_create_global_step() | ||
self._validate_print_every_n_secs(sess, at_end=True) | ||
# Verify proper reset. | ||
self._validate_print_every_n_secs(sess, at_end=True) | ||
|
||
|
||
if __name__ == '__main__': | ||
tf.test.main() |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
It would be nice to sync timestamps for different tensors in the same measurement. Right now the times are slightly off which could be annoying later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Understood, I think Karmel also had similar comment about bulk logging metrics. Currently we still can align them via global_step. Will address this when in future change.