Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
196 changes: 196 additions & 0 deletions official/resnet/layer_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,196 @@
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Test that the definitions of ResNet layers haven't changed.

These tests will fail if either:
a) The graph of a resnet layer changes and the change is significant enough
that it can no longer load existing checkpoints.
b) The numerical results produced by the layer change.

A warning will be issued if the graph changes, but the checkpoint still loads.

In the event that a layer change is intended, or the TensorFlow implementation
of a layer changes (and thus changes the graph), regenerate using the command:

$ python3 layer_test.py -regen
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think we are quite loose for import format. Usually one line break is enough between imports. The only place need 2 lines are between classes.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Neat. It did look quite awkward.

import sys

import tensorflow as tf # pylint: disable=g-bad-import-order
from official.resnet import resnet_model
from official.utils.testing import reference_data


DATA_FORMAT = "channels_last" # CPU instructions often preclude channels_first
BATCH_SIZE = 32
BLOCK_TESTS = [
dict(bottleneck=True, projection=True, version=1, width=8, channels=4),
dict(bottleneck=True, projection=True, version=2, width=8, channels=4),
dict(bottleneck=True, projection=False, version=1, width=8, channels=4),
dict(bottleneck=True, projection=False, version=2, width=8, channels=4),
dict(bottleneck=False, projection=True, version=1, width=8, channels=4),
dict(bottleneck=False, projection=True, version=2, width=8, channels=4),
dict(bottleneck=False, projection=False, version=1, width=8, channels=4),
dict(bottleneck=False, projection=False, version=2, width=8, channels=4),
]


class BaseTest(reference_data.BaseTest):
"""Tests for core ResNet layers."""

@property
def test_name(self):
return "resnet"

def _batch_norm_ops(self, test=False):
name = "batch_norm"

g = tf.Graph()
with g.as_default():
tf.set_random_seed(self.name_to_seed(name))
input_tensor = tf.get_variable(
"input_tensor", dtype=tf.float32,
initializer=tf.random_uniform((32, 16, 16, 3), maxval=1)
)
layer = resnet_model.batch_norm(
inputs=input_tensor, data_format=DATA_FORMAT, training=True)

self._save_or_test_ops(
name=name, graph=g, ops_to_eval=[input_tensor, layer], test=test,
correctness_function=self.default_correctness_function
)

def make_projection(self, filters_out, strides, data_format):
"""1D convolution with stride projector.

Args:
filters_out: Number of filters in the projection.
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

arg type is important in python as a weak type language.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I am going to defer this to a cleanup of all docstrings.

strides: Stride length for convolution.
data_format: channels_first or channels_last

Returns:
A CNN projector function with kernel_size 1.
"""
def projection_shortcut(inputs):
return resnet_model.conv2d_fixed_padding(
inputs=inputs, filters=filters_out, kernel_size=1, strides=strides,
data_format=data_format)
return projection_shortcut

def _resnet_block_ops(self, test, batch_size, bottleneck, projection,
version, width, channels):
"""Test whether resnet block construction has changed.

Args:
test: Whether or not to run as a test case.
batch_size: Number of points in the fake image. This is needed due to
batch normalization.
bottleneck: Whether or not to use bottleneck layers.
projection: Whether or not to project the input.
version: Which version of ResNet to test.
width: The width of the fake image.
channels: The number of channels in the fake image.
"""

name = "batch-size-{}_{}{}_version-{}_width-{}_channels-{}".format(
batch_size,
"bottleneck" if bottleneck else "building",
"_projection" if projection else "",
version,
width,
channels
)

if version == 1:
block_fn = resnet_model._building_block_v1
if bottleneck:
block_fn = resnet_model._bottleneck_block_v1
else:
block_fn = resnet_model._building_block_v2
if bottleneck:
block_fn = resnet_model._bottleneck_block_v2

g = tf.Graph()
with g.as_default():
tf.set_random_seed(self.name_to_seed(name))
strides = 1
channels_out = channels
projection_shortcut = None
if projection:
strides = 2
channels_out *= strides
projection_shortcut = self.make_projection(
filters_out=channels_out, strides=strides, data_format=DATA_FORMAT)

filters = channels_out
if bottleneck:
filters = channels_out // 4

input_tensor = tf.get_variable(
"input_tensor", dtype=tf.float32,
initializer=tf.random_uniform((batch_size, width, width, channels),
maxval=1)
)

layer = block_fn(inputs=input_tensor, filters=filters, training=True,
projection_shortcut=projection_shortcut, strides=strides,
data_format=DATA_FORMAT)

self._save_or_test_ops(
name=name, graph=g, ops_to_eval=[input_tensor, layer], test=test,
correctness_function=self.default_correctness_function
)

def test_batch_norm(self):
self._batch_norm_ops(test=True)

def test_block_0(self):
self._resnet_block_ops(test=True, batch_size=BATCH_SIZE, **BLOCK_TESTS[0])

def test_block_1(self):
self._resnet_block_ops(test=True, batch_size=BATCH_SIZE, **BLOCK_TESTS[1])

def test_block_2(self):
self._resnet_block_ops(test=True, batch_size=BATCH_SIZE, **BLOCK_TESTS[2])

def test_block_3(self):
self._resnet_block_ops(test=True, batch_size=BATCH_SIZE, **BLOCK_TESTS[3])

def test_block_4(self):
self._resnet_block_ops(test=True, batch_size=BATCH_SIZE, **BLOCK_TESTS[4])

def test_block_5(self):
self._resnet_block_ops(test=True, batch_size=BATCH_SIZE, **BLOCK_TESTS[5])

def test_block_6(self):
self._resnet_block_ops(test=True, batch_size=BATCH_SIZE, **BLOCK_TESTS[6])

def test_block_7(self):
self._resnet_block_ops(test=True, batch_size=BATCH_SIZE, **BLOCK_TESTS[7])

def regenerate(self):
"""Create reference data files for ResNet layer tests."""
self._batch_norm_ops(test=False)
for block_params in BLOCK_TESTS:
self._resnet_block_ops(test=False, batch_size=BATCH_SIZE, **block_params)


if __name__ == "__main__":
reference_data.main(argv=sys.argv, test_class=BaseTest)
Loading