Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 5 additions & 5 deletions samples/core/get_started/eager.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -67,7 +67,7 @@
"\n",
"Note: you can run **[this notebook, live in Google Colab](https://colab.research.google.com/github/tensorflow/models/blob/master/samples/core/get_started/eager.ipynb)** with zero setup.\n",
"\n",
"This tutorial describes how to use machine learning to *categorize* Iris flowers by species. It uses [TensorFlow](https://www.tensorflow.org)'s eager execution to 1. build a *model*, 2. *train* the model on example data, and 3. use the model to make *predictions* on unknown data. Machine Learning experience isn't required to follow this guide, but you'll need to read some Python code.\n",
"This tutorial describes how to use machine learning to *categorize* Iris flowers by species. It uses [TensorFlow](https://www.tensorflow.org)'s eager execution to (1) build a *model*, (2) *train* the model on example data, and (3) use the model to make *predictions* on unknown data. Machine learning experience isn't required to follow this guide, but you'll need to read some Python code.\n",
"\n",
"## TensorFlow programming\n",
"\n",
Expand Down Expand Up @@ -114,7 +114,7 @@
"source": [
"### Install the latest version of TensorFlow\n",
"\n",
"This tutorial uses eager execution features available in [TensorFlow 1.7](https://www.tensorflow.org/install/). (You may need to restart the runtime after upgrading.)"
"This tutorial uses eager execution, which is available in [TensorFlow 1.7](https://www.tensorflow.org/install/). (You may need to restart the runtime after upgrading.)"
]
},
{
Expand Down Expand Up @@ -534,7 +534,7 @@
"source": [
"### Create an optimizer\n",
"\n",
"An *[optimizer](https://developers.google.com/machine-learning/crash-course/glossary#optimizer)* applies the computed gradients to the model's variables to minimize the `loss` function. You can think of a curved surface (see Figure 3) and we want to find its lowest point by walking around. The gradients point in the direction of steepest the ascent—so we'll travel the opposite way and move down the hill. By iteratively calculating the loss and gradients for each *step* (or *[learning rate](https://developers.google.com/machine-learning/crash-course/glossary#learning_rate)*), we'll adjust the model during training. Gradually, the model will find the best combination of weights and bias to minimize loss. And the lower the loss, the better the model's predictions.\n",
"An *[optimizer](https://developers.google.com/machine-learning/crash-course/glossary#optimizer)* applies the computed gradients to the model's variables to minimize the `loss` function. You can think of a curved surface (see Figure 3) and we want to find its lowest point by walking around. The gradients point in the direction of steepest ascent—so we'll travel the opposite way and move down the hill. By iteratively calculating the loss and gradient for each batch, we'll adjust the model during training. Gradually, the model will find the best combination of weights and bias to minimize loss. And the lower the loss, the better the model's predictions.\n",
"\n",
"<table>\n",
" <tr><td>\n",
Expand All @@ -546,7 +546,7 @@
" </td></tr>\n",
"</table>\n",
"\n",
"TensorFlow has many [optimization algorithms](https://www.tensorflow.org/api_guides/python/train) available for training. This model uses the [tf.train.GradientDescentOptimizer](https://www.tensorflow.org/api_docs/python/tf/train/GradientDescentOptimizer) that implements the *[standard gradient descent](https://developers.google.com/machine-learning/crash-course/glossary#gradient_descent)* (SGD) algorithm. The `learning_rate` sets the step size to take for each iteration down the hill. This is a *hyperparameter* that you'll commonly adjust to achieve better results."
"TensorFlow has many [optimization algorithms](https://www.tensorflow.org/api_guides/python/train) available for training. This model uses the [tf.train.GradientDescentOptimizer](https://www.tensorflow.org/api_docs/python/tf/train/GradientDescentOptimizer) that implements the *[stochastic gradient descent](https://developers.google.com/machine-learning/crash-course/glossary#gradient_descent)* (SGD) algorithm. The `learning_rate` sets the step size to take for each iteration down the hill. This is a *hyperparameter* that you'll commonly adjust to achieve better results."
]
},
{
Expand Down Expand Up @@ -871,4 +871,4 @@
]
}
]
}
}