Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
98 changes: 98 additions & 0 deletions official/benchmark/resnet50_keras_core.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,98 @@
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Resnet50 Keras core benchmark."""

import tempfile
import time

import tensorflow as tf
import tensorflow_datasets as tfds

from official.benchmark import perfzero_benchmark


def _decode_and_center_crop(image_bytes):
"""Crops to center of image with padding then scales image_size."""
shape = tf.image.extract_jpeg_shape(image_bytes)
image_height, image_width, image_size = shape[0], shape[1], 224

padded_center_crop_size = tf.cast(
((image_size / (image_size + 32)) *
tf.cast(tf.minimum(image_height, image_width), tf.float32)),
tf.int32,
)

offset_height = ((image_height - padded_center_crop_size) + 1) // 2
offset_width = ((image_width - padded_center_crop_size) + 1) // 2
crop_window = tf.stack([
offset_height, offset_width, padded_center_crop_size,
padded_center_crop_size
])
image = tf.image.decode_and_crop_jpeg(image_bytes, crop_window, channels=3)
return tf.image.resize(image, [image_size, image_size], method="bicubic")


def _preprocessing(data):
return (
tf.cast(_decode_and_center_crop(data["image"]), tf.float32),
data["label"],
)


def _run_benchmark():
"""Runs a resnet50 compile/fit() call and returns the wall time."""
tmp_dir = tempfile.mkdtemp()
start_time = time.time()

batch_size = 64
dataset = tfds.load(
"imagenette",
decoders={"image": tfds.decode.SkipDecoding()},
split="train",
)

dataset = (
dataset.cache().repeat(
2
) # Artificially increase time per epoch to make it easier to measure
.map(_preprocessing,
num_parallel_calls=tf.data.experimental.AUTOTUNE).batch(
batch_size).prefetch(1))

with tf.distribute.MirroredStrategy().scope():
model = tf.keras.applications.ResNet50(weights=None)
model.compile(
optimizer=tf.train.experimental.enable_mixed_precision_graph_rewrite(
tf.keras.optimizers.Adam(), loss_scale="dynamic"),
loss="sparse_categorical_crossentropy",
)

tb_cbk = tf.keras.callbacks.TensorBoard(
f"{tmp_dir}/{tf.__version__}", profile_batch=300)
model.fit(dataset, verbose=2, epochs=3, callbacks=[tb_cbk])
end_time = time.time()
return end_time - start_time


class Resnet50KerasCoreBenchmark(perfzero_benchmark.PerfZeroBenchmark):

def benchmark_1_gpu(self):
wall_time = _run_benchmark()
self.report_benchmark(iters=-1, wall_time=wall_time)


if __name__ == "__main__":
tf.test.main()