Skip to content
This repository was archived by the owner on Aug 15, 2019. It is now read-only.
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
116 changes: 116 additions & 0 deletions src/graph/optimizers/adamax_optimizer.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,116 @@
/**
* @license
* Copyright 2017 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/

import {NDArrayMath} from '../../math/math';
import {NDArray, Scalar} from '../../math/ndarray';
import {Node} from '../graph';
import {SessionRuntime} from '../session';
import {SummedTensorArrayMap, TensorArrayMap} from '../tensor_array_map';

import {Optimizer} from './optimizer';

export class AdamMaxOptimizer extends Optimizer {
constructor(
protected learningRate: number,
private beta1: number, private beta2: number,
specifiedVariableList?: Node[]) {
super(learningRate, specifiedVariableList);
// b1, b2 keep initial value of beta* hyperparameters.
this.b1 = Scalar.new(this.beta1);
this.b2 = Scalar.new(this.beta2);
}

beforeBatch(
math: NDArrayMath, batchSize: number, runtime: SessionRuntime,
activationArrayMap: TensorArrayMap,
gradientArrayMap: SummedTensorArrayMap) {
super.beforeBatch(
math, batchSize, runtime, activationArrayMap, gradientArrayMap);

if (this.firstMoment.size() === 0) {
this.variableNodes.forEach(node => {
this.firstMoment.set(node.output, NDArray.zeros(node.output.shape));
});
}

if (this.weightedInfNorm.size() === 0) {
this.variableNodes.forEach(node => {
this.weightedInfNorm.set(node.output, NDArray.zeros(node.output.shape));
});
}
}

afterBatch(
math: NDArrayMath, batchSize: number, runtime: SessionRuntime,
activationArrayMap: TensorArrayMap,
gradientArrayMap: SummedTensorArrayMap) {
math.scope((keep) => {
this.variableNodes.forEach(node => {

const oldVariable = activationArrayMap.get(node.output);

const gradient = this.variableGradients.get(node.output);
const oldFirstMoment = this.firstMoment.get(node.output);
const oldWeightedInfNorm = this.weightedInfNorm.get(node.output);

const newFirstMoment = math.scaledArrayAdd(
this.b1, oldFirstMoment, math.sub(this.one, this.b1), gradient);

const ut0 = math.multiply(this.b2, oldWeightedInfNorm);
const ut1 = math.abs(gradient);

const newWeightedInfNorm = math.add(
math.relu(math.sub(ut0, ut1)), ut1); // update with element-wise max

const variable = math.scaledArrayAdd(this.one, oldVariable,
math.divide(this.c, math.sub(this.one, this.b1)),
math.divide(newFirstMoment, newWeightedInfNorm));

activationArrayMap.set(node.output, keep(variable));
node.data = variable;

this.firstMoment.set(node.output, keep(newFirstMoment));
this.weightedInfNorm.set(node.output, keep(newWeightedInfNorm));

oldVariable.dispose();
gradient.dispose();
oldFirstMoment.dispose();
oldWeightedInfNorm.dispose();
});
});

this.variableGradients.dispose();
this.variableGradients = new TensorArrayMap();
}

dispose() {
super.dispose();
this.firstMoment.dispose();
this.weightedInfNorm.dispose();
this.eps.dispose();
this.b1.dispose();
this.b2.dispose();
}

// Average of 1st gradient
private firstMoment = new TensorArrayMap();
// Average of exponentially weighed infinity norm
private weightedInfNorm = new TensorArrayMap();
private eps: Scalar;
private b1: Scalar;
private b2: Scalar;
}
67 changes: 66 additions & 1 deletion src/graph/session_test.ts
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,7 @@ import {RMSPropOptimizer} from './optimizers/rmsprop_optimizer';
import {SGDOptimizer} from './optimizers/sgd_optimizer';
import {AdadeltaOptimizer} from './optimizers/adadelta_optimizer';
import {AdamOptimizer} from './optimizers/adam_optimizer';
import {AdamMaxOptimizer} from './optimizers/adamax_optimizer';
import {FeedDictionary, FeedEntry, Session} from './session';

describe('FeedDictionary', () => {
Expand Down Expand Up @@ -500,7 +501,7 @@ describe('Session', () => {
});
});

it('adam', () => {
it('adam', () => {
const x = g.placeholder('x', [2]);
const w = g.variable('w', NDArray.zeros([1, 2]));
const b = g.variable('b', NDArray.zeros([1]));
Expand Down Expand Up @@ -557,5 +558,69 @@ describe('Session', () => {
test_util.expectArraysClose(
dydw2, new Float32Array([-.2, -.2]), 2e-5);
});
});

it('adamax', () => {
const x = g.placeholder('x', [2]);
const w = g.variable('w', NDArray.zeros([1, 2]));
const b = g.variable('b', NDArray.zeros([1]));
const y = g.reduceSum(g.add(g.matmul(w, x), b));

const safeMode = true;
const optimizer = new AdamMaxOptimizer(0.1, 0.8, 0.9);
const math = new NDArrayMathCPU(safeMode);
const session = new Session(g, math);
const inputProvider: InputProvider = {
getNextCopy() {
return Array1D.new([2, 4]);
},
disposeCopy(math, example) { }
};

math.scope(() => {
// w = reduce_sum(w_1*x_1 + w_2*x_2 + b)
// new_first_m = [beta1*old_first_m_w1 + (1-beta1)*grad_w1,
// beta1*old_first_m_w2 + (1-beta1)*grad_w2]
// = [.4, .8]
//
// ut_0 = beta2*old_weighted_inf_norm = [0, 0]
// u1_1 = [(1-beta2)*grad_w1, (1-beta2)*grad_w2] = [.2 .4]
// new_weighted_inf_norm = max(ut_0, ut_1 ) = [.2 .4]
//
// coefficient = alpha/(1-beta1) = 0.5
// updates = coefficient*[new_first_m1/new_weighted_inf_norm1,
// new_first_m2/new_weighted_inf_norm2]
// = [1.0, 1.0]
// w = [ w1_old - lr*updates_1, w2_old - lr*updates_2]
// = [-0.1, -0.1]
//
session.train(y, [{ tensor: x, data: inputProvider }], 1, optimizer);
const dydw = session.activationArrayMap.get(w).getValues();
test_util.expectArraysClose(
dydw, new Float32Array([-0.1, -0.1]), 1e-5);

// w = reduce_sum(w_1*x_1 + w_2*x_2 + b)
// new_first_m = [beta1*old_first_m_w1 + (1-beta1)*grad_w1,
// beta1*old_first_m_w2 + (1-beta1)*grad_w2]
// = [0.8*0.4 + 0.2*2, 0.8*0.8 + 0.2*4]
// = [0.72, 1.44]
//
// ut_0 = beta2*old_weighted_inf_norm = [.18 .36]
// u1_1 = [(1-beta2)*grad_w1, (1-beta2)*grad_w2] = [.2 .4]
// new_weighted_inf_norm = max(ut_0, ut_1 ) = [.2 .4]
//
// coefficient = alpha/(1-beta1) = 0.5
// updates = coefficient*[new_first_m1/new_weighted_inf_norm1,
// new_first_m2/new_weighted_inf_norm2]
// = [1.8, 1.8]
// w = [ w1_old - lr*updates_1, w2_old - lr*updates_2]
// = [-0.28, -0.28]

session.train(y, [{ tensor: x, data: inputProvider }], 1, optimizer);
const dydw2 = session.activationArrayMap.get(w).getValues();
test_util.expectArraysClose(
dydw2, new Float32Array([-.28, -.28]), 2e-5);
});
});

});
1 change: 1 addition & 0 deletions src/index.ts
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,7 @@ export {Optimizer} from './graph/optimizers/optimizer';
export {RMSPropOptimizer} from './graph/optimizers/rmsprop_optimizer';
export {SGDOptimizer} from './graph/optimizers/sgd_optimizer';
export {AdamOptimizer} from './graph/optimizers/adam_optimizer';
export {AdamMaxOptimizer} from './graph/optimizers/adamax_optimizer';
export {CostReduction, FeedEntry, Session} from './graph/session';
// tslint:disable-next-line:max-line-length
export {GraphRunner, GraphRunnerEventObserver, MetricReduction} from './graph_runner';
Expand Down