Skip to content
thomasb edited this page May 14, 2015 · 4 revisions
  1. Suggestion
We are interested in a probability distribution :<math>\rho:X \rightarrow \mathbb R_+</math>, such that



To assure positivity we set ρ = e φ and obtain ρ log ρ = φ e φ for the entropy. For simplicity we assume for P i only discrete probabilities P i = k p i , k δ x i , k

The Gâteaux differential D G â t e a u x in direction ψ is given by h F ( φ + h ψ ) h = 0

0 = D G â t e a u x ( φ e φ + i λ i k p i , k δ x i , k 1 d i 1 ( p i , k ) e φ d L ) ( φ ; ψ )   = h ( φ + h ψ ) e φ + h ψ + i , k λ i , k e φ + h ψ 1 d i 1 ( p i , k ) d L   = ψ e φ ( 1 + φ i , k λ i , k 1 d i 1 ( p i , k ) ) d L $ $

The last bracket has to be zero (a.e.) because ψ is of arbitrary choice and e φ 0 .

Absorbing '+1' in the λ 's leads to the condition

  Ich habe bisher immernoch keine Post bekommen.
  
  Weißt du mehr? 
Clone this wiki locally