-
Notifications
You must be signed in to change notification settings - Fork 7
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
12 changed files
with
2,927 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,105 @@ | ||
import torch | ||
from typing import List | ||
from transformers import AutoModelForCausalLM | ||
from mmte.utils.registry import registry | ||
from mmte.models.base import BaseChat, Response | ||
from .deepseek_vl.models import VLChatProcessor, MultiModalityCausalLM | ||
from .deepseek_vl.utils.io import load_pil_images | ||
|
||
|
||
@registry.register_chatmodel() | ||
class DeepSeekVL(BaseChat): | ||
""" | ||
Chat class for deepseek-7b model, | ||
""" | ||
|
||
# TODO: update model config | ||
MODEL_CONFIG = { | ||
"deepseek-7b": 'configs/models/deepseek/deepseek-7b.yaml', | ||
} | ||
model_family = list(MODEL_CONFIG.keys()) | ||
|
||
def __init__(self, model_id: str, device: str="cuda:0"): | ||
super().__init__(model_id) | ||
model_path = "deepseek-ai/deepseek-vl-7b-chat" | ||
vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path) | ||
tokenizer = vl_chat_processor.tokenizer | ||
|
||
vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True) | ||
vl_gpt = vl_gpt.to(torch.bfloat16).to(device).eval() | ||
|
||
self.device = device | ||
self.model = vl_gpt | ||
self.tokenizer = tokenizer | ||
self.vl_chat_processor = vl_chat_processor | ||
|
||
@torch.no_grad() | ||
def chat(self, messages: List, **generation_kwargs): | ||
# TODO: if system message provided. | ||
for message in messages: | ||
if message["role"] in ["system", "user", "assistant"]: | ||
if message["role"] == "user": | ||
if isinstance(message["content"], dict): | ||
# multimodal | ||
image_path = message["content"]["image_path"] | ||
user_message = message["content"]["text"] | ||
else: | ||
image_path = None | ||
user_message = message["content"] | ||
elif message["role"] == "assistant": | ||
# TODO: add assistant answer into the conversation | ||
pass | ||
else: | ||
raise ValueError("Unsupported role. Only system, user and assistant are supported.") | ||
|
||
if image_path is not None: | ||
conversation = [ | ||
{ | ||
"role": "User", | ||
"content": "<image_placeholder>" + user_message, | ||
"images": [image_path] | ||
}, | ||
{ | ||
"role": "Assistant", | ||
"content": "" | ||
} | ||
] | ||
else: | ||
conversation = [ | ||
{ | ||
"role": "User", | ||
"content": user_message, | ||
}, | ||
{ | ||
"role": "Assistant", | ||
"content": "" | ||
} | ||
] | ||
|
||
pil_images = load_pil_images(conversation) | ||
prepare_inputs = self.vl_chat_processor( | ||
conversations=conversation, | ||
images=pil_images, | ||
force_batchify=True | ||
).to(self.model.device) | ||
|
||
# run image encoder to get the image embeddings | ||
inputs_embeds = self.model.prepare_inputs_embeds(**prepare_inputs) | ||
|
||
# run the model to get the response | ||
outputs = self.model.language_model.generate( | ||
inputs_embeds=inputs_embeds, | ||
attention_mask=prepare_inputs.attention_mask, | ||
pad_token_id=self.tokenizer.eos_token_id, | ||
bos_token_id=self.tokenizer.bos_token_id, | ||
eos_token_id=self.tokenizer.eos_token_id, | ||
max_new_tokens=generation_kwargs.get("max_new_tokens", 512), | ||
do_sample=generation_kwargs.get("do_sample"), | ||
use_cache=True | ||
) | ||
|
||
output_text = self.tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True) | ||
|
||
scores = None | ||
return Response(self.model_id, output_text, scores, None) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,242 @@ | ||
# Copyright (c) 2023-2024 DeepSeek. | ||
# | ||
# Permission is hereby granted, free of charge, to any person obtaining a copy of | ||
# this software and associated documentation files (the "Software"), to deal in | ||
# the Software without restriction, including without limitation the rights to | ||
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of | ||
# the Software, and to permit persons to whom the Software is furnished to do so, | ||
# subject to the following conditions: | ||
# | ||
# The above copyright notice and this permission notice shall be included in all | ||
# copies or substantial portions of the Software. | ||
# | ||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS | ||
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR | ||
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER | ||
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | ||
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | ||
|
||
from typing import Dict, List, Literal, Optional, Tuple, Union | ||
|
||
import torch | ||
import torch.nn as nn | ||
import torchvision.transforms | ||
from einops import rearrange | ||
|
||
from .sam import create_sam_vit | ||
from .siglip_vit import create_siglip_vit | ||
|
||
|
||
class CLIPVisionTower(nn.Module): | ||
def __init__( | ||
self, | ||
model_name: str = "siglip_large_patch16_384", | ||
image_size: Union[Tuple[int, int], int] = 336, | ||
select_feature: str = "patch", | ||
select_layer: int = -2, | ||
select_layers: list = None, | ||
ckpt_path: str = "", | ||
pixel_mean: Optional[List[float]] = None, | ||
pixel_std: Optional[List[float]] = None, | ||
**kwargs, | ||
): | ||
super().__init__() | ||
|
||
self.model_name = model_name | ||
self.select_feature = select_feature | ||
self.select_layer = select_layer | ||
self.select_layers = select_layers | ||
|
||
vision_tower_params = { | ||
"model_name": model_name, | ||
"image_size": image_size, | ||
"ckpt_path": ckpt_path, | ||
"select_layer": select_layer, | ||
} | ||
vision_tower_params.update(kwargs) | ||
self.vision_tower, self.forward_kwargs = self.build_vision_tower( | ||
vision_tower_params | ||
) | ||
|
||
if pixel_mean is not None and pixel_std is not None: | ||
image_norm = torchvision.transforms.Normalize( | ||
mean=pixel_mean, std=pixel_std | ||
) | ||
else: | ||
image_norm = None | ||
|
||
self.image_norm = image_norm | ||
|
||
def build_vision_tower(self, vision_tower_params): | ||
if self.model_name.startswith("siglip"): | ||
self.select_feature = "same" | ||
vision_tower = create_siglip_vit(**vision_tower_params) | ||
forward_kwargs = dict() | ||
|
||
elif self.model_name.startswith("sam"): | ||
vision_tower = create_sam_vit(**vision_tower_params) | ||
forward_kwargs = dict() | ||
|
||
else: # huggingface | ||
from transformers import CLIPVisionModel | ||
|
||
vision_tower = CLIPVisionModel.from_pretrained(**vision_tower_params) | ||
forward_kwargs = dict(output_hidden_states=True) | ||
|
||
return vision_tower, forward_kwargs | ||
|
||
def feature_select(self, image_forward_outs): | ||
if isinstance(image_forward_outs, torch.Tensor): | ||
# the output has been the self.select_layer"s features | ||
image_features = image_forward_outs | ||
else: | ||
image_features = image_forward_outs.hidden_states[self.select_layer] | ||
|
||
if self.select_feature == "patch": | ||
# if the output has cls_token | ||
image_features = image_features[:, 1:] | ||
elif self.select_feature == "cls_patch": | ||
image_features = image_features | ||
elif self.select_feature == "same": | ||
image_features = image_features | ||
|
||
else: | ||
raise ValueError(f"Unexpected select feature: {self.select_feature}") | ||
return image_features | ||
|
||
def forward(self, images): | ||
""" | ||
Args: | ||
images (torch.Tensor): [b, 3, H, W] | ||
Returns: | ||
image_features (torch.Tensor): [b, n_patch, d] | ||
""" | ||
|
||
if self.image_norm is not None: | ||
images = self.image_norm(images) | ||
|
||
image_forward_outs = self.vision_tower(images, **self.forward_kwargs) | ||
image_features = self.feature_select(image_forward_outs) | ||
return image_features | ||
|
||
|
||
class HybridVisionTower(nn.Module): | ||
def __init__( | ||
self, | ||
high_res_cfg: Dict, | ||
low_res_cfg: Dict, | ||
freeze_high: bool = False, | ||
freeze_low: bool = False, | ||
concat_type: Literal["feature", "sequence", "add", "tuple"] = "tuple", | ||
**ignore_kwargs, | ||
): | ||
super().__init__() | ||
|
||
self.vision_tower_high = CLIPVisionTower(**high_res_cfg) | ||
self.vision_tower_low = CLIPVisionTower(**low_res_cfg) | ||
self.low_res_size = low_res_cfg["image_size"] | ||
self.concat_type = concat_type | ||
|
||
self.high_layer_norm = nn.LayerNorm(high_res_cfg.get("output_dim", 1024)) | ||
self.low_layer_norm = nn.LayerNorm(low_res_cfg.get("output_dim", 1024)) | ||
|
||
if freeze_high: | ||
for p_name, p in self.vision_tower_high.named_parameters(): | ||
p.requires_grad = False | ||
self.vision_tower_high = self.vision_tower_high.eval() | ||
else: | ||
# train donwsamples and neck | ||
for p_name, p in self.vision_tower_high.named_parameters(): | ||
if "downsamples" in p_name or "neck" in p_name: | ||
p.requires_grad = True | ||
else: | ||
p.requires_grad = False | ||
|
||
if freeze_low: | ||
for p in self.vision_tower_low.parameters(): | ||
p.requires_grad = False | ||
self.vision_tower_low = self.vision_tower_low.eval() | ||
|
||
self.resize = torchvision.transforms.Resize(self.low_res_size, antialias=True) | ||
|
||
def forward(self, images: torch.Tensor): | ||
""" | ||
Args: | ||
images (torch.Tensor): [bs, 3, H, W] | ||
Returns: | ||
res (torch.Tensor): [bs, t, c] | ||
""" | ||
|
||
# [bs, c, h, w] | ||
high_images = images | ||
|
||
# [bs, c, h_low, w_low] | ||
low_images = self.resize(images) | ||
|
||
# separately run two vision towers | ||
# run high_res vision tower | ||
high_res = self.vision_tower_high(high_images) | ||
# [bs, c, h, w] -> [bs, h*w, c] | ||
high_res = rearrange(high_res, "b c h w -> b (h w) c") | ||
# run low_res vision tower | ||
low_res = self.vision_tower_low(low_images) | ||
|
||
if self.concat_type == "feature": | ||
images_features = torch.cat([high_res, low_res], dim=-1) | ||
elif self.concat_type == "sequence": | ||
images_features = torch.cat([high_res, low_res], dim=1) | ||
elif self.concat_type == "add": | ||
images_features = high_res + low_res | ||
elif self.concat_type == "tuple": | ||
images_features = (high_res, low_res) | ||
|
||
else: | ||
raise ValueError( | ||
"Currently only support `feature`, `sequence`, `add` and `tuple` concat type." | ||
) | ||
|
||
return images_features | ||
|
||
|
||
if __name__ == "__main__": | ||
image_size = 1024 | ||
x = torch.zeros(2, 3, image_size, image_size).bfloat16().cuda() | ||
|
||
high_res_cfg = dict( | ||
model_name="sam_b_downsample", | ||
select_feature="same", | ||
image_size=image_size, | ||
pixel_mean=(0.48145466, 0.4578275, 0.40821073), | ||
pixel_std=(0.26862954, 0.26130258, 0.27577711), | ||
select_layer=-1, | ||
ckpt_path="", | ||
) | ||
|
||
low_res_cfg = dict( | ||
model_name="siglip_large_patch16_384", | ||
select_feature="same", | ||
image_size=384, | ||
pixel_mean=(0.5, 0.5, 0.5), | ||
pixel_std=(0.5, 0.5, 0.5), | ||
select_layer=-1, | ||
ckpt_path="", | ||
) | ||
|
||
net = ( | ||
HybridVisionTower( | ||
high_res_cfg=high_res_cfg, | ||
low_res_cfg=low_res_cfg, | ||
freeze_high=True, | ||
freeze_low=True, | ||
concat_type="tuple", | ||
) | ||
.bfloat16() | ||
.cuda() | ||
) | ||
high_x, low_x = net(x) | ||
print(x.shape, high_x.shape, low_x.shape) |
Oops, something went wrong.