-
Notifications
You must be signed in to change notification settings - Fork 18
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
step_embed() "argument is of length zero" error #49
Comments
That sounds frustrating! Can you create a reprex, a small reproducible example, so that we can find the source of your problem? If you haven't created a reprex before, this is a helpful introduction. |
library(recipes)
#> Loading required package: dplyr
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
#>
#> Attaching package: 'recipes'
#> The following object is masked from 'package:stats':
#>
#> step
library(embed)
rec <- recipe(Case~AnimacyObj+ Participants+ AgencySubj, data=causee)%>%
step_embed(Participants,
outcome=vars(Case),
num_terms=1,
hidden_units=10,
options = embed_control(epochs = 25, validation_split=0.2)) %>%
prep()
#> Error in is_tibble(data): object 'causee' not found Created on 2020-07-05 by the reprex package (v0.3.0) |
I see now it says my dataset is not a tibble? So I should just transform it? |
No, in that reprex, you haven't loaded any data at all, so that's an error for not finding |
I can't get my dataset to be found. It certainly is loaded. library(recipes)
#> Loading required package: dplyr
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
#>
#> Attaching package: 'recipes'
#> The following object is masked from 'package:stats':
#>
#> step
library(embed)
library(datapasta)
dpasta(causee)
#> Error in is_tibble(input): object 'causee' not found
rec <- recipe(Case~AnimacyObj+ Participants+ AgencySubj, data=causee)%>%
step_embed(Participants,
outcome=vars(Case),
num_terms=1,
hidden_units=10,
options = embed_control(epochs = 25, validation_split=0.2)) %>%
prep()
#> Error in is_tibble(data): object 'causee' not found Created on 2020-07-05 by the reprex package (v0.3.0) |
Take a look at the animated GIF in this section, and notice when you get out some output that can be pasted into a reprex (the The idea here, which this explains really well if you can take some time to look through the slides, is to create a self-contained, rigorous example (including containing insides it a hopefully small dataset that reproduces your problem) so that others can understand your problem. |
Thanks, here is what I got now. library(recipes)
#> Loading required package: dplyr
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
#>
#> Attaching package: 'recipes'
#> The following object is masked from 'package:stats':
#>
#> step
library(embed)
library(datapasta)
str(mini_df)
#> Error in str(mini_df): object 'mini_df' not found
dpasta(mini_df)
#> Error in is_tibble(input): object 'mini_df' not found
mini_df=tibble::tribble(
~Case.Participants.AnimacyObj.AgencySubj,
"1 DAT 1 1 1",
"2 DAT 1 1 0",
"3 ACC 1 1 1",
"4 ACC 1 1 0",
"5 ACC 1 1 0",
"6 ACC 0 1 0"
)
head(mini_df)
#> # A tibble: 6 x 1
#> Case.Participants.AnimacyObj.AgencySubj
#> <chr>
#> 1 1 DAT 1 1 1
#> 2 2 DAT 1 1 0
#> 3 3 ACC 1 1 1
#> 4 4 ACC 1 1 0
#> 5 5 ACC 1 1 0
#> 6 6 ACC 0 1 0
rec <- recipe(Case~AnimacyObj+ Participants+ AgencySubj, data=mini_df)%>%
step_embed(Participants,
outcome=vars(Case),
num_terms=3,
hidden_units=10,
options = embed_control(epochs = 25, validation_split=0.2)) %>%
prep()
#> Error in eval(predvars, data, env): object 'Case' not found Created on 2020-07-05 by the reprex package (v0.3.0) |
Can you run |
Here it is library(recipes)
#> Loading required package: dplyr
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
#>
#> Attaching package: 'recipes'
#> The following object is masked from 'package:stats':
#>
#> step
library(embed)
library(datapasta)
causee= read.csv("causee_only_data.csv", sep=";")
#> Warning in file(file, "rt"): cannot open file 'causee_only_data.csv': No such
#> file or directory
#> Error in file(file, "rt"): cannot open the connection
mini_df= select(causee,Case, Participants, AnimacyObj, AgencySubj)%>%
mutate_if(is.character, factor)
#> Error in select(causee, Case, Participants, AnimacyObj, AgencySubj): object 'causee' not found
rec <- recipe(Case~., data=mini_df)%>%
step_embed(Participants,
outcome=vars(Case),
num_terms=3,
hidden_units=10,
options = embed_control(epochs = 25, validation_split=0.2)) %>%
prep(training=mini_df)
#> Error in is_tibble(data): object 'mini_df' not found Created on 2020-07-05 by the reprex package (v0.3.0) Session infodevtools::session_info()
#> ─ Session info ───────────────────────────────────────────────────────────────
#> setting value
#> version R version 3.6.3 (2020-02-29)
#> os macOS Mojave 10.14.6
#> system x86_64, darwin15.6.0
#> ui X11
#> language (EN)
#> collate en_US.UTF-8
#> ctype en_US.UTF-8
#> tz Europe/Oslo
#> date 2020-07-05
#>
#> ─ Packages ───────────────────────────────────────────────────────────────────
#> package * version date lib source
#> assertthat 0.2.1 2019-03-21 [1] CRAN (R 3.6.0)
#> backports 1.1.8 2020-06-17 [1] CRAN (R 3.6.2)
#> base64enc 0.1-3 2015-07-28 [1] CRAN (R 3.6.0)
#> bayesplot 1.7.2.9000 2020-06-21 [1] Github (stan-dev/bayesplot@7709e43)
#> boot 1.3-24 2019-12-20 [2] CRAN (R 3.6.3)
#> callr 3.4.3 2020-03-28 [1] CRAN (R 3.6.2)
#> class 7.3-15 2019-01-01 [2] CRAN (R 3.6.3)
#> cli 2.0.2 2020-02-28 [1] CRAN (R 3.6.0)
#> codetools 0.2-16 2018-12-24 [2] CRAN (R 3.6.3)
#> colorspace 1.4-1 2019-03-18 [1] CRAN (R 3.6.0)
#> colourpicker 1.0 2017-09-27 [1] CRAN (R 3.6.0)
#> crayon 1.3.4 2017-09-16 [1] CRAN (R 3.6.0)
#> crosstalk 1.1.0.1 2020-03-13 [1] CRAN (R 3.6.0)
#> datapasta * 3.1.0 2020-01-17 [1] CRAN (R 3.6.0)
#> desc 1.2.0 2018-05-01 [1] CRAN (R 3.6.0)
#> devtools 2.3.0 2020-04-10 [1] CRAN (R 3.6.2)
#> digest 0.6.25 2020-02-23 [1] CRAN (R 3.6.0)
#> dplyr * 1.0.0 2020-05-29 [1] CRAN (R 3.6.2)
#> DT 0.13 2020-03-23 [1] CRAN (R 3.6.0)
#> dygraphs 1.1.1.6 2018-07-11 [1] CRAN (R 3.6.0)
#> ellipsis 0.3.1 2020-05-15 [1] CRAN (R 3.6.2)
#> embed * 0.1.1 2020-07-03 [1] CRAN (R 3.6.3)
#> evaluate 0.14 2019-05-28 [1] CRAN (R 3.6.0)
#> fansi 0.4.1 2020-01-08 [1] CRAN (R 3.6.0)
#> fastmap 1.0.1 2019-10-08 [1] CRAN (R 3.6.0)
#> fs 1.4.1 2020-04-04 [1] CRAN (R 3.6.3)
#> generics 0.0.2 2018-11-29 [1] CRAN (R 3.6.0)
#> ggplot2 3.3.2 2020-06-19 [1] CRAN (R 3.6.3)
#> ggridges 0.5.2 2020-01-12 [1] CRAN (R 3.6.0)
#> glue 1.4.1 2020-05-13 [1] CRAN (R 3.6.2)
#> gower 0.2.1 2019-05-14 [1] CRAN (R 3.6.0)
#> gridExtra 2.3 2017-09-09 [1] CRAN (R 3.6.0)
#> gtable 0.3.0 2019-03-25 [1] CRAN (R 3.6.0)
#> gtools 3.8.2 2020-03-31 [1] CRAN (R 3.6.2)
#> highr 0.8 2019-03-20 [1] CRAN (R 3.6.0)
#> htmltools 0.5.0 2020-06-16 [1] CRAN (R 3.6.2)
#> htmlwidgets 1.5.1 2019-10-08 [1] CRAN (R 3.6.0)
#> httpuv 1.5.4 2020-06-06 [1] CRAN (R 3.6.2)
#> igraph 1.2.5 2020-03-19 [1] CRAN (R 3.6.0)
#> inline 0.3.15 2018-05-18 [1] CRAN (R 3.6.0)
#> ipred 0.9-9 2019-04-28 [1] CRAN (R 3.6.0)
#> jsonlite 1.6.1 2020-02-02 [1] CRAN (R 3.6.0)
#> keras 2.3.0.0 2020-05-19 [1] CRAN (R 3.6.2)
#> knitr 1.28 2020-02-06 [1] CRAN (R 3.6.0)
#> later 1.1.0.1 2020-06-05 [1] CRAN (R 3.6.2)
#> lattice 0.20-38 2018-11-04 [2] CRAN (R 3.6.3)
#> lava 1.6.7 2020-03-05 [1] CRAN (R 3.6.0)
#> lifecycle 0.2.0 2020-03-06 [1] CRAN (R 3.6.0)
#> lme4 1.1-23 2020-04-07 [1] CRAN (R 3.6.2)
#> loo 2.2.0 2019-12-19 [1] CRAN (R 3.6.0)
#> lubridate 1.7.9 2020-06-08 [1] CRAN (R 3.6.2)
#> magrittr 1.5 2014-11-22 [1] CRAN (R 3.6.0)
#> markdown 1.1 2019-08-07 [1] CRAN (R 3.6.0)
#> MASS 7.3-51.5 2019-12-20 [2] CRAN (R 3.6.3)
#> Matrix 1.2-18 2019-11-27 [1] CRAN (R 3.6.0)
#> matrixStats 0.56.0 2020-03-13 [1] CRAN (R 3.6.0)
#> memoise 1.1.0 2017-04-21 [1] CRAN (R 3.6.0)
#> mime 0.9 2020-02-04 [1] CRAN (R 3.6.0)
#> miniUI 0.1.1.1 2018-05-18 [1] CRAN (R 3.6.0)
#> minqa 1.2.4 2014-10-09 [1] CRAN (R 3.6.0)
#> munsell 0.5.0 2018-06-12 [1] CRAN (R 3.6.0)
#> nlme 3.1-144 2020-02-06 [2] CRAN (R 3.6.3)
#> nloptr 1.2.2.1 2020-03-11 [1] CRAN (R 3.6.0)
#> nnet 7.3-14 2020-04-26 [1] CRAN (R 3.6.2)
#> pillar 1.4.4 2020-05-05 [1] CRAN (R 3.6.2)
#> pkgbuild 1.0.8 2020-05-07 [1] CRAN (R 3.6.2)
#> pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 3.6.0)
#> pkgload 1.1.0 2020-05-29 [1] CRAN (R 3.6.2)
#> plyr 1.8.6 2020-03-03 [1] CRAN (R 3.6.0)
#> prettyunits 1.1.1 2020-01-24 [1] CRAN (R 3.6.0)
#> processx 3.4.2 2020-02-09 [1] CRAN (R 3.6.0)
#> prodlim 2019.11.13 2019-11-17 [1] CRAN (R 3.6.0)
#> promises 1.1.1 2020-06-09 [1] CRAN (R 3.6.2)
#> ps 1.3.3 2020-05-08 [1] CRAN (R 3.6.2)
#> purrr 0.3.4 2020-04-17 [1] CRAN (R 3.6.2)
#> R6 2.4.1 2019-11-12 [1] CRAN (R 3.6.0)
#> Rcpp 1.0.4.6 2020-04-09 [1] CRAN (R 3.6.3)
#> RcppParallel 5.0.1 2020-05-06 [1] CRAN (R 3.6.2)
#> recipes * 0.1.13 2020-06-23 [1] CRAN (R 3.6.2)
#> remotes 2.1.1 2020-02-15 [1] CRAN (R 3.6.0)
#> reshape2 1.4.4 2020-04-09 [1] CRAN (R 3.6.2)
#> reticulate 1.16 2020-05-27 [1] CRAN (R 3.6.2)
#> rlang 0.4.6 2020-05-02 [1] CRAN (R 3.6.2)
#> rmarkdown 2.3 2020-06-18 [1] CRAN (R 3.6.2)
#> rpart 4.1-15 2019-04-12 [2] CRAN (R 3.6.3)
#> rprojroot 1.3-2 2018-01-03 [1] CRAN (R 3.6.0)
#> rsconnect 0.8.16 2019-12-13 [1] CRAN (R 3.6.3)
#> rstan 2.19.3 2020-02-11 [1] CRAN (R 3.6.0)
#> rstanarm 2.19.2 2019-10-03 [1] CRAN (R 3.6.0)
#> rstantools 2.0.0 2019-09-15 [1] CRAN (R 3.6.0)
#> scales 1.1.1 2020-05-11 [1] CRAN (R 3.6.2)
#> sessioninfo 1.1.1 2018-11-05 [1] CRAN (R 3.6.0)
#> shiny 1.4.0.2 2020-03-13 [1] CRAN (R 3.6.0)
#> shinyjs 1.1 2020-01-13 [1] CRAN (R 3.6.0)
#> shinystan 2.5.0 2018-05-01 [1] CRAN (R 3.6.0)
#> shinythemes 1.1.2 2018-11-06 [1] CRAN (R 3.6.0)
#> StanHeaders 2.21.0-5 2020-06-09 [1] CRAN (R 3.6.2)
#> statmod 1.4.34 2020-02-17 [1] CRAN (R 3.6.0)
#> stringi 1.4.6 2020-02-17 [1] CRAN (R 3.6.0)
#> stringr 1.4.0 2019-02-10 [1] CRAN (R 3.6.0)
#> survival 3.2-3 2020-06-13 [1] CRAN (R 3.6.2)
#> tensorflow 2.2.0 2020-05-11 [1] CRAN (R 3.6.2)
#> testthat 2.3.2 2020-03-02 [1] CRAN (R 3.6.0)
#> tfruns 1.4 2018-08-25 [1] CRAN (R 3.6.0)
#> threejs 0.3.3 2020-01-21 [1] CRAN (R 3.6.0)
#> tibble 3.0.1 2020-04-20 [1] CRAN (R 3.6.2)
#> tidyr 1.1.0 2020-05-20 [1] CRAN (R 3.6.2)
#> tidyselect 1.1.0 2020-05-11 [1] CRAN (R 3.6.2)
#> timeDate 3043.102 2018-02-21 [1] CRAN (R 3.6.0)
#> usethis 1.6.1 2020-04-29 [1] CRAN (R 3.6.2)
#> uwot 0.1.8 2020-03-16 [1] CRAN (R 3.6.0)
#> vctrs 0.3.1 2020-06-05 [1] CRAN (R 3.6.2)
#> whisker 0.4 2019-08-28 [1] CRAN (R 3.6.0)
#> withr 2.2.0 2020-04-20 [1] CRAN (R 3.6.2)
#> xfun 0.14 2020-05-20 [1] CRAN (R 3.6.2)
#> xtable 1.8-4 2019-04-21 [1] CRAN (R 3.6.0)
#> xts 0.12-0 2020-01-19 [1] CRAN (R 3.6.0)
#> yaml 2.2.1 2020-02-01 [1] CRAN (R 3.6.0)
#> zeallot 0.1.0 2018-01-28 [1] CRAN (R 3.6.0)
#> zoo 1.8-8 2020-05-02 [1] CRAN (R 3.6.2)
#>
#> [1] /Users/ggu020/Library/R/3.6/library
#> [2] /Library/Frameworks/R.framework/Versions/3.6/Resources/library |
Can you execute this code and send the output? library(tidymodels)
library(embed)
library(modeldata)
data(ames, package = "modeldata")
rec <-
recipe(Sale_Price ~ MS_SubClass + Neighborhood, data = ames) %>%
step_log(Sale_Price, base = 10) %>%
step_embed(all_predictors(), outcome = vars(Sale_Price))
rec %>% prep()
tensorflow::tf_version()
rec %>% prep() |
Yes, thanks for your help by the way. library(tidymodels)
#> ── Attaching packages ────────────────────────────────────── tidymodels 0.1.0 ──
#> ✓ broom 0.5.6 ✓ recipes 0.1.13
#> ✓ dials 0.0.7 ✓ rsample 0.0.7
#> ✓ dplyr 1.0.0 ✓ tibble 3.0.1
#> ✓ ggplot2 3.3.2 ✓ tune 0.1.0
#> ✓ infer 0.5.2 ✓ workflows 0.1.1
#> ✓ parsnip 0.1.1 ✓ yardstick 0.0.6
#> ✓ purrr 0.3.4
#> ── Conflicts ───────────────────────────────────────── tidymodels_conflicts() ──
#> x purrr::discard() masks scales::discard()
#> x dplyr::filter() masks stats::filter()
#> x dplyr::lag() masks stats::lag()
#> x recipes::step() masks stats::step()
library(embed)
library(modeldata)
data(ames, package = "modeldata")
rec <-
recipe(Sale_Price ~ MS_SubClass + Neighborhood, data = ames) %>%
step_log(Sale_Price, base = 10) %>%
step_embed(all_predictors(), outcome = vars(Sale_Price))
rec %>% prep()
#> Error in if (is.na(b)) return(1L): argument is of length zero
tensorflow::tf_version()
#> NULL
rec %>% prep()
#> Error in if (is.na(b)) return(1L): argument is of length zero Created on 2020-07-06 by the reprex package (v0.3.0) |
Can you run this command twice and send the results? tensorflow::tf_config() |
tensorflow::tf_config()
#> Installation of TensorFlow not found.
#>
#> Python environments searched for 'tensorflow' package:
#> /Users/ggu020/Library/r-miniconda/envs/r-reticulate/bin/python3.6
#>
#> You can install TensorFlow using the install_tensorflow() function.
#> Created on 2020-07-06 by the reprex package (v0.3.0) tensorflow::tf_config()
#> Installation of TensorFlow not found.
#>
#> Python environments searched for 'tensorflow' package:
#> /Users/ggu020/Library/r-miniconda/envs/r-reticulate/bin/python3.6
#>
#> You can install TensorFlow using the install_tensorflow() function.
#> Created on 2020-07-06 by the reprex package (v0.3.0) |
You can install TensorFlow using the |
I followed the step of installing tensor flow and it works now. I had installed it via install.packages(), I didn't know it required a different method. Thanks for your help! |
Sooo... here's why this is confusing (for everyone). There is a bug in the CRAN version of For some reason, this does work in a reprex. I should have been more clear; it needed to be run (without reprex) in a new R session twice. The overall solution is to install the version of |
Ohh I see! Ok, thanks for the clarification! |
This issue has been automatically locked. If you believe you have found a related problem, please file a new issue (with a reprex: https://reprex.tidyverse.org) and link to this issue. |
I'm trying to learn how to do entity embedding for categorical variables but I keep getting this error and I can't figure out why.
rec <- recipe(Case~AnimacyObj+ Participants+ AgencySubj, data=causee)%>%
step_embed(AnimacyObj,Participants, AgencySubj,
outcome=vars(Case),
num_terms=3,
hidden_units=10,
options= embed_control(epochs = 25, validation_split=0.2))%>%
prep()
Error in if (is.na(b)) return(1L) : argument is of length zero
The text was updated successfully, but these errors were encountered: