Skip to content

Commit

Permalink
un-comment other tests
Browse files Browse the repository at this point in the history
  • Loading branch information
zachmayer committed May 23, 2015
1 parent c652729 commit 675215a
Show file tree
Hide file tree
Showing 4 changed files with 397 additions and 397 deletions.
304 changes: 152 additions & 152 deletions pkg/caret/tests/testthat/test_trim_C5.R
Original file line number Diff line number Diff line change
@@ -1,152 +1,152 @@
#
# test_that('single tree', {
# skip_on_cran()
# library(caret)
# library(C50)
#
# set.seed(1)
# tr_dat <- twoClassSim(200)
# te_dat <- twoClassSim(200)
#
# set.seed(2)
# class_trim <- train(Class ~ ., data = tr_dat,
# method = "C5.0",
# tuneGrid = data.frame(trials = 1,
# model = "tree",
# winnow = FALSE),
# trControl = trainControl(method = "none",
# classProbs = TRUE,
# trim = TRUE))
#
# set.seed(2)
# class_notrim <- train(Class ~ ., data = tr_dat,
# method = "C5.0",
# tuneGrid = data.frame(trials = 1,
# model = "tree",
# winnow = FALSE),
# trControl = trainControl(method = "none",
# classProbs = TRUE,
# trim = FALSE))
#
# expect_equal(predict(class_trim, te_dat),
# predict(class_notrim, te_dat))
#
# expect_equal(predict(class_trim, te_dat, type = "prob"),
# predict(class_notrim, te_dat, type = "prob"))
#
# expect_less_than(object.size(class_trim)-object.size(class_notrim), 0)
# })
#
# test_that('single rule', {
# skip_on_cran()
# library(caret)
# library(C50)
#
# set.seed(1)
# tr_dat <- twoClassSim(200)
# te_dat <- twoClassSim(200)
#
# set.seed(2)
# class_trim <- train(Class ~ ., data = tr_dat,
# method = "C5.0",
# tuneGrid = data.frame(trials = 1,
# model = "rules",
# winnow = FALSE),
# trControl = trainControl(method = "none",
# classProbs = TRUE,
# trim = TRUE))
#
# set.seed(2)
# class_notrim <- train(Class ~ ., data = tr_dat,
# method = "C5.0",
# tuneGrid = data.frame(trials = 1,
# model = "rules",
# winnow = FALSE),
# trControl = trainControl(method = "none",
# classProbs = TRUE,
# trim = FALSE))
#
# expect_equal(predict(class_trim, te_dat),
# predict(class_notrim, te_dat))
#
# expect_equal(predict(class_trim, te_dat, type = "prob"),
# predict(class_notrim, te_dat, type = "prob"))
#
# expect_less_than(object.size(class_trim)-object.size(class_notrim), 0)
# })
#
# test_that('boosted tree', {
# skip_on_cran()
# library(caret)
# library(C50)
#
# set.seed(1)
# tr_dat <- twoClassSim(200)
# te_dat <- twoClassSim(200)
#
# set.seed(2)
# class_trim <- train(Class ~ ., data = tr_dat,
# method = "C5.0",
# tuneGrid = data.frame(trials = 5,
# model = "tree",
# winnow = FALSE),
# trControl = trainControl(method = "none",
# classProbs = TRUE,
# trim = TRUE))
#
# set.seed(2)
# class_notrim <- train(Class ~ ., data = tr_dat,
# method = "C5.0",
# tuneGrid = data.frame(trials = 5,
# model = "tree",
# winnow = FALSE),
# trControl = trainControl(method = "none",
# classProbs = TRUE,
# trim = FALSE))
#
# expect_equal(predict(class_trim, te_dat),
# predict(class_notrim, te_dat))
#
# expect_equal(predict(class_trim, te_dat, type = "prob"),
# predict(class_notrim, te_dat, type = "prob"))
#
# expect_less_than(object.size(class_trim)-object.size(class_notrim), 0)
# })
#
# test_that('boosted rule', {
# skip_on_cran()
# library(caret)
# library(C50)
#
# set.seed(1)
# tr_dat <- twoClassSim(200)
# te_dat <- twoClassSim(200)
#
# set.seed(2)
# class_trim <- train(Class ~ ., data = tr_dat,
# method = "C5.0",
# tuneGrid = data.frame(trials = 5,
# model = "rules",
# winnow = FALSE),
# trControl = trainControl(method = "none",
# classProbs = TRUE,
# trim = TRUE))
#
# set.seed(2)
# class_notrim <- train(Class ~ ., data = tr_dat,
# method = "C5.0",
# tuneGrid = data.frame(trials = 5,
# model = "rules",
# winnow = FALSE),
# trControl = trainControl(method = "none",
# classProbs = TRUE,
# trim = FALSE))
#
# expect_equal(predict(class_trim, te_dat),
# predict(class_notrim, te_dat))
#
# expect_equal(predict(class_trim, te_dat, type = "prob"),
# predict(class_notrim, te_dat, type = "prob"))
#
# expect_less_than(object.size(class_trim)-object.size(class_notrim), 0)
# })

test_that('single tree', {
skip_on_cran()
library(caret)
library(C50)

set.seed(1)
tr_dat <- twoClassSim(200)
te_dat <- twoClassSim(200)

set.seed(2)
class_trim <- train(Class ~ ., data = tr_dat,
method = "C5.0",
tuneGrid = data.frame(trials = 1,
model = "tree",
winnow = FALSE),
trControl = trainControl(method = "none",
classProbs = TRUE,
trim = TRUE))

set.seed(2)
class_notrim <- train(Class ~ ., data = tr_dat,
method = "C5.0",
tuneGrid = data.frame(trials = 1,
model = "tree",
winnow = FALSE),
trControl = trainControl(method = "none",
classProbs = TRUE,
trim = FALSE))

expect_equal(predict(class_trim, te_dat),
predict(class_notrim, te_dat))

expect_equal(predict(class_trim, te_dat, type = "prob"),
predict(class_notrim, te_dat, type = "prob"))

expect_less_than(object.size(class_trim)-object.size(class_notrim), 0)
})

test_that('single rule', {
skip_on_cran()
library(caret)
library(C50)

set.seed(1)
tr_dat <- twoClassSim(200)
te_dat <- twoClassSim(200)

set.seed(2)
class_trim <- train(Class ~ ., data = tr_dat,
method = "C5.0",
tuneGrid = data.frame(trials = 1,
model = "rules",
winnow = FALSE),
trControl = trainControl(method = "none",
classProbs = TRUE,
trim = TRUE))

set.seed(2)
class_notrim <- train(Class ~ ., data = tr_dat,
method = "C5.0",
tuneGrid = data.frame(trials = 1,
model = "rules",
winnow = FALSE),
trControl = trainControl(method = "none",
classProbs = TRUE,
trim = FALSE))

expect_equal(predict(class_trim, te_dat),
predict(class_notrim, te_dat))

expect_equal(predict(class_trim, te_dat, type = "prob"),
predict(class_notrim, te_dat, type = "prob"))

expect_less_than(object.size(class_trim)-object.size(class_notrim), 0)
})

test_that('boosted tree', {
skip_on_cran()
library(caret)
library(C50)

set.seed(1)
tr_dat <- twoClassSim(200)
te_dat <- twoClassSim(200)

set.seed(2)
class_trim <- train(Class ~ ., data = tr_dat,
method = "C5.0",
tuneGrid = data.frame(trials = 5,
model = "tree",
winnow = FALSE),
trControl = trainControl(method = "none",
classProbs = TRUE,
trim = TRUE))

set.seed(2)
class_notrim <- train(Class ~ ., data = tr_dat,
method = "C5.0",
tuneGrid = data.frame(trials = 5,
model = "tree",
winnow = FALSE),
trControl = trainControl(method = "none",
classProbs = TRUE,
trim = FALSE))

expect_equal(predict(class_trim, te_dat),
predict(class_notrim, te_dat))

expect_equal(predict(class_trim, te_dat, type = "prob"),
predict(class_notrim, te_dat, type = "prob"))

expect_less_than(object.size(class_trim)-object.size(class_notrim), 0)
})

test_that('boosted rule', {
skip_on_cran()
library(caret)
library(C50)

set.seed(1)
tr_dat <- twoClassSim(200)
te_dat <- twoClassSim(200)

set.seed(2)
class_trim <- train(Class ~ ., data = tr_dat,
method = "C5.0",
tuneGrid = data.frame(trials = 5,
model = "rules",
winnow = FALSE),
trControl = trainControl(method = "none",
classProbs = TRUE,
trim = TRUE))

set.seed(2)
class_notrim <- train(Class ~ ., data = tr_dat,
method = "C5.0",
tuneGrid = data.frame(trials = 5,
model = "rules",
winnow = FALSE),
trControl = trainControl(method = "none",
classProbs = TRUE,
trim = FALSE))

expect_equal(predict(class_trim, te_dat),
predict(class_notrim, te_dat))

expect_equal(predict(class_trim, te_dat, type = "prob"),
predict(class_notrim, te_dat, type = "prob"))

expect_less_than(object.size(class_trim)-object.size(class_notrim), 0)
})
Loading

0 comments on commit 675215a

Please sign in to comment.