You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Perform a Bayesian estimation of the exploratory Sparse Latent Class Model for Binary Data described by Chen, Y., Culpepper, S. A., and Liang, F. (2020) <https://doi.org/10.1007/s11336-019-09693-2>
The goal of rrum is to provide an implementation of Gibbs sampling algorithm for Bayesian Estimation of reduced Reparametrized Unifed Model (rRUM), described by Culpepper and Hudson (2017) <doi: 10.1177/0146621617707511>.
Ordinal Higher-Order Exploratory General Diagnostic Models for Polytomous Data described by Culpepper and Balamuta (In Press) <doi:10.1080/00273171.2021.1985949>.
Perform a Bayesian estimation of the Exploratory reduced Reparameterized Unified Model (errum) described by Culpepper and Chen (2018) <doi:10.3102/1076998618791306>.
Simulate cognitive diagnostic model data for Deterministic Input, Noisy "And" Gate (DINA) and reduced Reparameterized Unified Model (rRUM) from Culpepper and Hudson (2017) <doi: 10.1177/0146621617707511>, Culpepper (2015) <doi:10.3102/1076998615595403>, and de la Torre (2009) <doi:10.3102/1076998607309474>.
Estimate the Deterministic Input, Noisy "And" Gate (DINA) cognitive diagnostic model parameters using the Gibbs sampler described by Culpepper (2015) <doi:10.3102/1076998615595403>.