Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

What should I do if I want to train this model on my own dataset? #4

Closed
KyleYueye opened this issue Apr 9, 2022 · 2 comments
Closed

Comments

@KyleYueye
Copy link

KyleYueye commented Apr 9, 2022

I notice that for each dataset, info files (.pkl) are generated. Do you have any rules about generating these info files? Because I want to train this model on my own dataset. Thanks a lot.

@jskhu
Copy link
Member

jskhu commented Apr 9, 2022

It depends on the dataset, but typically the pickle files contain labels, calibration, and basic metadata. For example, KITTI's train pickle file contains the following information for each training sample:

>>> import pickle
>>> import pprint
>>> pp = pprint.PrettyPrinter()
>>> with open('kitti_infos_train.pkl', 'rb') as f:
...     data = pickle.load(f)
...
>>> pp.pprint(data[0])
{'annos': {'alpha': array([-0.2]),
           'bbox': array([[712.4 , 143.  , 810.73, 307.92]], dtype=float32),
           'difficulty': array([0], dtype=int32),
           'dimensions': array([[1.2 , 1.89, 0.48]]),
           'gt_boxes_lidar': array([[ 8.73138046, -1.85591757, -0.65469939,  1.2       ,  0.48      ,
         1.89      , -1.58079633]]),
           'index': array([0], dtype=int32),
           'location': array([[1.84, 1.47, 8.41]], dtype=float32),
           'name': array(['Pedestrian'], dtype='<U10'),
           'num_points_in_gt': array([377], dtype=int32),
           'occluded': array([0.]),
           'rotation_y': array([0.01]),
           'score': array([-1.]),
           'truncated': array([0.])},
 'calib': {'P2': array([[ 7.07049316e+02,  0.00000000e+00,  6.04081421e+02,
         4.57583084e+01],
       [ 0.00000000e+00,  7.07049316e+02,  1.80506607e+02,
        -3.45415711e-01],
       [ 0.00000000e+00,  0.00000000e+00,  1.00000000e+00,
         4.98101581e-03],
       [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         1.00000000e+00]]),
           'R0_rect': array([[ 0.9999128 ,  0.01009263, -0.00851193,  0.        ],
       [-0.01012729,  0.9999406 , -0.00403767,  0.        ],
       [ 0.00847067,  0.00412352,  0.9999556 ,  0.        ],
       [ 0.        ,  0.        ,  0.        ,  1.        ]],
      dtype=float32),
           'Tr_velo_to_cam': array([[ 0.00692796, -0.99997222, -0.00275783, -0.02457729],
       [-0.00116298,  0.00274984, -0.99999553, -0.06127237],
       [ 0.99997532,  0.00693114, -0.0011439 , -0.33210289],
       [ 0.        ,  0.        ,  0.        ,  1.        ]])},
 'image': {'image_idx': '000000',
           'image_shape': array([ 370, 1224], dtype=int32)},
 'point_cloud': {'lidar_idx': '000000', 'num_features': 4}}

Unless your data is extremely different, my suggestion would be to convert your data to a KITTI-like format so you can use OpenPCDet's dataset framework easily. An example Waymo to KITTI converter is here: https://github.com/caizhongang/waymo_kitti_converter. You can probably do something similar with your dataset.

@KyleYueye
Copy link
Author

It depends on the dataset, but typically the pickle files contain labels, calibration, and basic metadata. For example, KITTI's train pickle file contains the following information for each training sample:

>>> import pickle
>>> import pprint
>>> pp = pprint.PrettyPrinter()
>>> with open('kitti_infos_train.pkl', 'rb') as f:
...     data = pickle.load(f)
...
>>> pp.pprint(data[0])
{'annos': {'alpha': array([-0.2]),
           'bbox': array([[712.4 , 143.  , 810.73, 307.92]], dtype=float32),
           'difficulty': array([0], dtype=int32),
           'dimensions': array([[1.2 , 1.89, 0.48]]),
           'gt_boxes_lidar': array([[ 8.73138046, -1.85591757, -0.65469939,  1.2       ,  0.48      ,
         1.89      , -1.58079633]]),
           'index': array([0], dtype=int32),
           'location': array([[1.84, 1.47, 8.41]], dtype=float32),
           'name': array(['Pedestrian'], dtype='<U10'),
           'num_points_in_gt': array([377], dtype=int32),
           'occluded': array([0.]),
           'rotation_y': array([0.01]),
           'score': array([-1.]),
           'truncated': array([0.])},
 'calib': {'P2': array([[ 7.07049316e+02,  0.00000000e+00,  6.04081421e+02,
         4.57583084e+01],
       [ 0.00000000e+00,  7.07049316e+02,  1.80506607e+02,
        -3.45415711e-01],
       [ 0.00000000e+00,  0.00000000e+00,  1.00000000e+00,
         4.98101581e-03],
       [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         1.00000000e+00]]),
           'R0_rect': array([[ 0.9999128 ,  0.01009263, -0.00851193,  0.        ],
       [-0.01012729,  0.9999406 , -0.00403767,  0.        ],
       [ 0.00847067,  0.00412352,  0.9999556 ,  0.        ],
       [ 0.        ,  0.        ,  0.        ,  1.        ]],
      dtype=float32),
           'Tr_velo_to_cam': array([[ 0.00692796, -0.99997222, -0.00275783, -0.02457729],
       [-0.00116298,  0.00274984, -0.99999553, -0.06127237],
       [ 0.99997532,  0.00693114, -0.0011439 , -0.33210289],
       [ 0.        ,  0.        ,  0.        ,  1.        ]])},
 'image': {'image_idx': '000000',
           'image_shape': array([ 370, 1224], dtype=int32)},
 'point_cloud': {'lidar_idx': '000000', 'num_features': 4}}

Unless your data is extremely different, my suggestion would be to convert your data to a KITTI-like format so you can use OpenPCDet's dataset framework easily. An example Waymo to KITTI converter is here: https://github.com/caizhongang/waymo_kitti_converter. You can probably do something similar with your dataset.

Thank you

@jskhu jskhu closed this as completed Apr 9, 2022
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants