The goal of FileSetExperiment
is to wrap sesame fileSet objects into a
SummarizedExperiment-like object, with the corresponding expected
features.
Get the latest stable R
release from
CRAN. Then install FileSetExperiment
from Bioconductor using the following code:
if (!requireNamespace("BiocManager", quietly = TRUE)) {
install.packages("BiocManager")
}
BiocManager::install("FileSetExperiment")
And the development version from GitHub with:
BiocManager::install("trichelab/FileSetExperiment")
This is a basic example which shows you how to solve a common problem:
library("FileSetExperiment")
#> Loading required package: SummarizedExperiment
#> Loading required package: MatrixGenerics
#> Loading required package: matrixStats
#>
#> Attaching package: 'MatrixGenerics'
#> The following objects are masked from 'package:matrixStats':
#>
#> colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
#> colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
#> colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
#> colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
#> colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
#> colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
#> colWeightedMeans, colWeightedMedians, colWeightedSds,
#> colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
#> rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
#> rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
#> rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
#> rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
#> rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
#> rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
#> rowWeightedSds, rowWeightedVars
#> Loading required package: GenomicRanges
#> Loading required package: stats4
#> Loading required package: BiocGenerics
#>
#> Attaching package: 'BiocGenerics'
#> The following objects are masked from 'package:stats':
#>
#> IQR, mad, sd, var, xtabs
#> The following objects are masked from 'package:base':
#>
#> anyDuplicated, aperm, append, as.data.frame, basename, cbind,
#> colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find,
#> get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply,
#> match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
#> Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort,
#> table, tapply, union, unique, unsplit, which.max, which.min
#> Loading required package: S4Vectors
#>
#> Attaching package: 'S4Vectors'
#> The following object is masked from 'package:utils':
#>
#> findMatches
#> The following objects are masked from 'package:base':
#>
#> expand.grid, I, unname
#> Loading required package: IRanges
#> Loading required package: GenomeInfoDb
#> Loading required package: Biobase
#> Welcome to Bioconductor
#>
#> Vignettes contain introductory material; view with
#> 'browseVignettes()'. To cite Bioconductor, see
#> 'citation("Biobase")', and for packages 'citation("pkgname")'.
#>
#> Attaching package: 'Biobase'
#> The following object is masked from 'package:MatrixGenerics':
#>
#> rowMedians
#> The following objects are masked from 'package:matrixStats':
#>
#> anyMissing, rowMedians
#> Loading required package: sesame
#> Loading required package: sesameData
#> Loading required package: ExperimentHub
#> Loading required package: AnnotationHub
#> Loading required package: BiocFileCache
#> Loading required package: dbplyr
#>
#> Attaching package: 'AnnotationHub'
#> The following object is masked from 'package:Biobase':
#>
#> cache
#> Loading sesameData.
#>
#> ----------------------------------------------------------
#> | SEnsible Step-wise Analysis of DNA MEthylation (SeSAMe)
#> | --------------------------------------------------------
#> | Please cache auxiliary data by "sesameDataCache()".
#> | This needs to be done only once per SeSAMe installation.
#> ----------------------------------------------------------
#> Loading required package: S7
## basic example code
What is special about using README.Rmd
instead of just README.md
?
You can include R chunks like so:
summary(cars)
#> speed dist
#> Min. : 4.0 Min. : 2.00
#> 1st Qu.:12.0 1st Qu.: 26.00
#> Median :15.0 Median : 36.00
#> Mean :15.4 Mean : 42.98
#> 3rd Qu.:19.0 3rd Qu.: 56.00
#> Max. :25.0 Max. :120.00
You’ll still need to render README.Rmd
regularly, to keep README.md
up-to-date.
You can also embed plots, for example:
In that case, don’t forget to commit and push the resulting figure files, so they display on GitHub!
Below is the citation output from using citation('FileSetExperiment')
in R. Please run this yourself to check for any updates on how to cite
FileSetExperiment.
print(citation("FileSetExperiment"), bibtex = TRUE)
#> To cite package 'FileSetExperiment' in publications use:
#>
#> trichelab (2024). _FileSetExperiment_.
#> doi:10.18129/B9.bioc.FileSetExperiment
#> <https://doi.org/10.18129/B9.bioc.FileSetExperiment>,
#> https://github.com/trichelab/FileSetExperiment/FileSetExperiment - R
#> package version 0.99.0,
#> <http://www.bioconductor.org/packages/FileSetExperiment>.
#>
#> A BibTeX entry for LaTeX users is
#>
#> @Manual{,
#> title = {FileSetExperiment},
#> author = {{trichelab}},
#> year = {2024},
#> url = {http://www.bioconductor.org/packages/FileSetExperiment},
#> note = {https://github.com/trichelab/FileSetExperiment/FileSetExperiment - R package version 0.99.0},
#> doi = {10.18129/B9.bioc.FileSetExperiment},
#> }
#>
#> trichelab (2024). "Analysis of large cohorts with FileSeteExperiment
#> objects." _bioRxiv_. doi:10.1101/TODO <https://doi.org/10.1101/TODO>,
#> <https://www.biorxiv.org/content/10.1101/TODO>.
#>
#> A BibTeX entry for LaTeX users is
#>
#> @Article{,
#> title = {Analysis of large cohorts with FileSeteExperiment objects},
#> author = {{trichelab}},
#> year = {2024},
#> journal = {bioRxiv},
#> doi = {10.1101/TODO},
#> url = {https://www.biorxiv.org/content/10.1101/TODO},
#> }
Please note that the FileSetExperiment
was only made possible thanks
to many other R and bioinformatics software authors, which are cited
either in the vignettes and/or the paper(s) describing this package.
Please note that the FileSetExperiment
project is released with a
Contributor Code of
Conduct. By
contributing to this project, you agree to abide by its terms.
- Continuous code testing is possible thanks to GitHub actions through usethis, remotes, and rcmdcheck customized to use Bioconductor’s docker containers and BiocCheck.
- Code coverage assessment is possible thanks to codecov and covr.
- The documentation website is automatically updated thanks to pkgdown.
- The code is styled automatically thanks to styler.
- The documentation is formatted thanks to devtools and roxygen2.
For more details, check the dev
directory.
This package was developed using biocthis.