Simple neural network implementation in python
And Function
Inputs:[0, 0] Target:[0] Result:[0.0]
Inputs:[0, 1] Target:[0] Result:[-0.0]
Inputs:[1, 1] Target:[1] Result:[0.99]
Inputs:[1, 0] Target:[0] Result:[0.0]
Mean Square Error = 2.806539502841615e-05
Or Function
Inputs:[0, 0] Target:[0] Result:[0.0]
Inputs:[0, 1] Target:[1] Result:[1.0]
Inputs:[1, 0] Target:[1] Result:[1.0]
Inputs:[1, 1] Target:[1] Result:[1.0]
Mean Square Error = 5.746578530894208e-06
Xor Function
Inputs:[0, 0] Target:[0] Result:[0.0]
Inputs:[0, 1] Target:[1] Result:[0.99]
Inputs:[1, 0] Target:[1] Result:[0.99]
Inputs:[1, 1] Target:[0] Result:[0.0]
Mean Square Error = 0.00026675172503416554
Nand Function
Inputs:[0, 0] Target:[1] Result:[1.0]
Inputs:[0, 1] Target:[1] Result:[1.0]
Inputs:[1, 0] Target:[1] Result:[1.0]
Inputs:[1, 1] Target:[0] Result:[-0.0]
Mean Square Error = 8.442442478476193e-06
Nor Function
Inputs:[0, 0] Target:[1] Result:[0.99]
Inputs:[0, 1] Target:[0] Result:[0.0]
Inputs:[1, 0] Target:[0] Result:[0.0]
Inputs:[1, 1] Target:[0] Result:[-0.0]
Mean Square Error = 8.37314056446251e-06
Xnor Function
Inputs:[0, 0] Target:[1] Result:[0.99]
Inputs:[0, 1] Target:[0] Result:[0.0]
Inputs:[1, 0] Target:[0] Result:[0.0]
Inputs:[1, 1] Target:[1] Result:[0.99]
Mean Square Error = 0.00036547859452619236