Skip to content

convert.py - RuntimeError: CUDA error: invalid configuration argument #20

@Thireus

Description

@Thireus
python convert.py -i ~/safetensor/model -o ~/EXL2/model_4bit -c ~/EXL2/0000.parquet -b 4.0 -hb 6 -l 4096 -ml 4096

 -- Beginning new job
 -- Input: /home/user/safetensor/model
 -- Output: /home/user/EXL2/model_4bit
 -- Calibration dataset: /home/user/EXL2/0000.parquet, 100 / 16 (16) rows, 4096 tokens per sample
 -- Target bits per weight: 4.0 (decoder), 6 (head)
 -- Tokenizing samples (measurement)...
/home/user/exllamav2/conversion/tokenize.py:16: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`
  tokens = tokenizer.encode(row[0])
 -- Token embeddings (measurement)...
 -- Measuring quantization impact...
 -- Layer: model.layers.0 (Attention)
Traceback (most recent call last):
  File "/home/user/exllamav2/convert.py", line 168, in <module>
    measure_quant(job, save_job, model)
  File "/home/user/exllamav2/conversion/quantize.py", line 184, in measure_quant
    outputs = module.forward(x, cache, attn_mask, intermediates = True)
  File "/home/user/exllamav2/exllamav2/attn.py", line 195, in forward
    return self.forward_torch(hidden_states, cache, attn_mask, past_len, intermediates)
  File "/home/user/exllamav2/exllamav2/attn.py", line 460, in forward_torch
    key_states = self.repeat_kv(key_states, self.model.config.num_key_value_groups)
  File "/home/user/exllamav2/exllamav2/attn.py", line 188, in repeat_kv
    hidden_states = hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
RuntimeError: CUDA error: invalid configuration argument
CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1.
Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.

Any idea what could be the cause of this issue?

Edit: Bad or unsupported safetensor files it seems
Edit2: That wasn't bad safetensors in the end, cf TL;DR


TL;DR: The issue is likely due to VRAM limitation, 24GB not enough for -ml 4096 -l 4096 at the moment. Some VRAM otpimization code is underway, until then you must use the default -ml 2048 -l 2048.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions