Skip to content

Python function to construct an ODS spreadsheet on the fly - without having to store the entire file in memory or disk

License

Notifications You must be signed in to change notification settings

uktrade/stream-write-ods

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

stream-write-ods

PyPI package Test suite Code coverage

Python function to construct an ODS (OpenDocument Spreadsheet) on the fly - without having to store the entire file in memory or disk.

Can be used to convert CSV, SQLite, or JSON to ODS format.

Installation

pip install stream-write-ods

Usage

In general, pass a nested iterable to stream_write_ods and it will return an interable of bytes of the ODS file, as follows.

from stream_write_ods import stream_write_ods

def get_sheets():
    def get_rows_of_sheet_1():
        yield 'Value A', 'Value B'
        yield 'Value C', 'Value D'

    yield 'Sheet 1 name', ('col_1_name', 'col_2_name'), get_rows_of_sheet_1()

    def get_rows_of_sheet_2():
        yield 'col_1_value',

    yield 'Sheet 2 name', ('col_1_name',), get_rows_of_sheet_2()

ods_chunks = stream_write_ods(get_sheets())

Usage: Convert CSV file to ODS

The following recipe converts a local CSV file to ODS

import csv
from stream_write_ods import stream_write_ods

def get_sheets(sheet_name, csv_reader):
    yield sheet_name, next(csv_reader), csv_reader

with open('my.csv', 'r', encoding='utf-8', newline='') as f:
    csv_reader = csv.reader(f, csv.QUOTE_NONNUMERIC)
    ods_chunks = stream_write_ods(get_sheets('Sheet 1', csv_reader))

Usage: Convert CSV bytes to ODS

Using to-file-like-obj, the following recipe converts an iterable yielding the bytes of a CSV to ODS.

import csv
from io import IOBase, TextIOWrapper
from to_file_like_obj import to_file_like_obj
from stream_write_ods import stream_write_ods

# Any iterable that yields the bytes of a CSV file
# Hard coded for the purposes of this example
bytes_iter = (
    b'col_1,col_2\n',
    b'1,"value"\n',
)

def get_sheets(sheet_name, csv_reader):
    yield sheet_name, next(csv_reader), csv_reader

lines_iter = TextIOWrapper(to_file_like_obj(bytes_iter), , encoding='utf-8', newline='')
csv_reader = csv.reader(lines_iter, csv.QUOTE_NONNUMERIC)
ods_chunks = stream_write_ods(get_sheets('Sheet 1', csv_reader))

Usage: Convert large/chunked pandas dataframe to ODS

from io import BytesIO
from itertools import chain
import pandas as pd
from stream_write_ods import stream_write_ods

# Hard coded for the purposes of this example,
# but could be any file-like object
csv_file = BytesIO((
    b'col_1,col_2\n' +
    b'1,"value"\n'
    b'2,"other value"\n'
))

def get_sheets(reader):
    columns = None

    def get_rows():
        nonlocal columns

        for chunk in reader:
            if columns is None:
                columns = tuple(chunk.columns.tolist())
            yield from (row for index, row in chunk.iterrows())

    rows = get_rows()
    first_row = next(rows)

    yield 'Sheet 1', columns, chain((first_row,), rows)

# Directly saves the chunked dataframe as ODS for the purposes
# of this example, but could include calculations / manipulations
with pd.read_csv(csv_file, chunksize=1024) as reader:
    ods_chunks = stream_write_ods(get_sheets(reader))

Usage: Convert JSON to ODS

Using ijson to stream-parse a JSON file and to-file-like-obj to convert an iterable of bytes to a file-like object, it's possible to convert JSON data to ODS on the fly.

import ijson
import itertools
from to_file_like_obj import to_file_like_obj
from stream_write_ods import stream_write_ods

# Any iterable that yields the bytes of a JSON file
# Hard coded for the purposes of this example
json_bytes_iter = (b'''{
  "data": [
      {"id": 1, "name": "Foo"},
      {"id": 2, "name": "Bar"}
  ]
}''',)

def get_sheets(json_file):
    columns = None

    def rows():
        nonlocal columns
        for item in ijson.items(json_file, 'data.item'):
            if columns is None:
                columns = list(item.keys())
            yield tuple(item[column] for column in columns)

    # Ensure columns populated
    rows_it = rows()
    first_row = next(rows_it)

    yield 'Sheet 1', columns, itertools.chain((first_row,), rows_it)

json_file = to_file_like_obj(json_bytes_iter)  # ijson requires a file-like object
ods_chunks = stream_write_ods(get_sheets(json_file))

Usage: Convert SQLite to ODS

SQLite isn't particularly streaming-friendly since typically you need random access to the file. But it's still possible to use stream-write-ods to convert SQLite to ODS.

import contextlib
import sqlite3
import tempfile
from stream_write_ods import stream_write_ods

@contextlib.contextmanager
def get_db():
    # Hard coded in memory database for the purposes of this example
    with sqlite3.connect(':memory:') as con:
        cur = con.cursor()
        cur.execute("CREATE TABLE my_table_a (my_col text);")
        cur.execute("CREATE TABLE my_table_b (my_col text);")
        cur.execute("INSERT INTO my_table_a VALUES ('Value A')")
        cur.execute("INSERT INTO my_table_b VALUES ('Value B')")
        yield con

def quote_identifier(value):
    return '"' + value.replace('"', '""') + '"'

def get_sheets(db):
    cur_table = db.cursor()
    cur_table.execute('''
        SELECT name FROM sqlite_master
        WHERE type = "table" AND name NOT LIKE 'sqlite\\_%' ESCAPE '\\'
    ''')
    cur_data = db.cursor()
    for table, in cur_table:
        cur_data.execute(f'SELECT * FROM {quote_identifier(table)} ORDER BY rowid')
        yield table, tuple(col[0] for col in cur_data.description), cur_data

with get_db() as db:
    ods_chunks = stream_write_ods(get_sheets(db))

Types

There are 8 possible data types in an Open Document Spreadsheet: boolean, currency, date, float, percentage, string, time, and void. 4 of these can be output by stream-write-ods, chosen automatically according to the following table.

Python type ODS type
boolean boolean
date date - without time component
datetime date - with time component
int float
float float
str string
bytes string - base64 encoded
NoneType no type - empty cell

It is possible to change how each type is encoded by overriding the encoders parameter of the stream_write_ods function. See stream-write-ods.py for the default implementation.

Modified at

ODS files are ZIP files, and as such require a "modified at" time for each member file. This defaults to datetime.now(), but can be overridden by the get_modified_at parameter of the stream_write_ods function. See stream-write-ods.py for the default implementation.

This is useful if you want to make sure generated ODS files are byte-for-byte identical to a fixed reference, say from automated tests.

Large ODS files

ODS spreadsheets are essentially ZIP archives containing several member files. By default, stream-write-ods creates ZIP files that are limited to 4GiB (gibibyte) of data for compatibility reasons, for example to support older versions of LibreOffice. If you attempt to store more than this limit a ZipOverflow exception will be raised.

To avoid this exception and to store more data, you can pass use_zip_64=True as an argument to stream-write-ods. This results in a more recent ZIP format used that allows 16 EiB (exbibyte) of data to be stored, but with the downside that older versions of LibreOffice will not be able to open the resulting ODS file.

About

Python function to construct an ODS spreadsheet on the fly - without having to store the entire file in memory or disk

Topics

Resources

License

Security policy

Stars

Watchers

Forks

Packages

No packages published

Languages