Skip to content

utkarshkumar21/MLproject

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 

Repository files navigation

MLproject

TEMPERATURE FORECAST • Objective: Perform an exploratory data analysis and build a prediction model for temperature forcast based on the CRISP-DM process for the dataset below. The thought process and conclusions will be shares throughout this notebook. • Dataset: Bias correction of numerical prediction model temperature forecast Data Set from UCI

Table of content • Import libraries • Read dataset • Exploratory data analysis ▪ General information ▪ Missing values ▪ Categorical variables ▪ Numerical variables • Machine learning model • Conclusion

  1. Import libraries

Screenshot (26) Libraries used numpy,pandas,matplotlib,seaborn,sklearn etc.

  1. READING DATASET Screenshot (29) ▪ OUTPUT Screenshot (27)

  2. Exploratory Data Analysis ▪ General information Screenshot (28)

No. of dataframes are 7752 rows and 25 columns

▪ Missing values Screenshot (32)

There are 20 from 25 columns with missing values: Columns with no missing values = {'LDAPS_Tmax_lapse', 'L DAPS_PPT2', 'Date', 'station', 'LDAPS_PPT1', 'Present_Tmin', 'LDAPS_RHmax', 'Next_Tmax', 'LDAPS_CC1', 'LDAPS_Tmi n_lapse', 'LDAPS_PPT3', 'LDAPS_LH', 'LDAPS_CC4', 'LDAP S_RHmin', 'LDAPS_CC3', 'Next_Tmin', 'LDAPS_WS', 'Presen t_Tmax', 'LDAPS_CC2', 'LDAPS_PPT4'}

Screenshot (31)

There are 0 from 25 columns with more than 75.0% of missing values: Columns more than 75.0% of values missing = set()

Screenshot (34)

There are 0 from 25 columns with more than 50.0% of missing values: Columns more than 50.0% of values missing = set()

Screenshot (36) ▪ OUTPUT Screenshot (38)

Screenshot (39) The dataframe has 7588 rows and 25 columns

Screenshot (42)

▪ OUTPUT Screenshot (43)

Screenshot (44)

OUTPUT: 2.1155830753353975 • The rows with missing values were droped successfully and 2% of the data was lost.

• Categorical variables:

Screenshot (50)

There are 1 from 25 columns with categorical data Columns categorical data = ['Date']

Screenshot (51)

Screenshot (53)

Screenshot (54) • OUTPUT: 307

Screenshot (55)

• OUTPUT: ‘2013-06-30’

Screenshot (56)

• OUTPUT: ‘2013’

Screenshot (57)

• OUTPUT: ‘06’

Screenshot (58)

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published