Skip to content
Switch branches/tags

Latest commit


Git stats


Failed to load latest commit information.

SIPs: Succinct Interest Points from Unsupervised Inlierness Probability Learning

render_kitti render_euroc

This is the code for the 2019 3DV paper SIPs: Succinct Interest Points from Unsupervised Inlierness Probability Learning (PDF) by Titus Cieslewski, Kosta Derpanis and Davide Scaramuzza. When using this, please cite:

  author        = {Titus Cieslewski and Konstantinos G. Derpanis and Davide Scaramuzza},
  title         = {SIPs: Succinct Interest Points
                  from Unsupervised Inlierness Probability Learning},
  booktitle     = {3D Vision (3DV)},
  year          = 2019

If you are looking to minimize the amount of data necessary for feature matching, you might also be interested in our related work Matching Features without Descriptors: Implicitly Matched Interest Points.

Supplementary Material

The supplementary material mentioned in the paper can be found at .


We recommend working in a virtual environment (also when using ROS/catkin)

pip install --upgrade opencv-contrib-python== opencv-python== ipython \
    pyquaternion scipy absl-py hickle matplotlib sklearn tensorflow-gpu cachetools

With ROS/catkin

sudo apt install python-catkin-tools
mkdir -p sips_ws/src
cd sips_ws
catkin config --init --mkdirs --extend /opt/ros/<YOUR VERSION> --merge-devel
cd src
git clone
git clone
git clone
catkin build
. ../devel/setup.bash

Without ROS/catkin

mkdir sips_ws
cd sips_ws
git clone
git clone

Make sure imips_open_deps/rpg_common_py/python, imips_open_deps/rpg_datasets_py/python and sips2_open/python are in your PYTHONPATH.

Get pre-trained weights

Download the weights from and extract them into python/sips2/checkpoints.


Infer any image folder

python --in_dir=INPUT_DIR [--num_test_pts=N] [--out_dir=OUTPUT_DIR] [--ext=.EXTENSION]

--num_test_pts can be specified to extract a given amount of interest points, otherwise a default of 500 points will be extracted. As shown in the paper, much less points (50-100) are required to establish relative pose in typical robotics datasets. If no output directory is provided, it will be $HOME/imips_out/INPUT_DIR. ext can be used to specify image extensions other than .jpg or .png (add the dot).

Test using our data

Follow these instructions to link up KITTI. To speed things up, you can download and extract the contained files to python/sips2/tracked indices (visual overlap precalculation). Then, run:

python --ds=kt --val_best --testing

This will populate results/match_render/d=10_tds=tmbrc... with images like the following:

kt00 275 286


(Re)move the previously downloaded checkpoints. Follow these instructions to link up TUM mono and Robotcars. Then, run:


To visualize training progress, you can run:


in parallel. Here is what it should look like after over 60k iterations:



This work was supported by the National Centre of Competence in Research (NCCR) Robotics through the Swiss National Science Foundation and the SNSF-ERC Starting Grant. The Titan Xp used for this research was donated by the NVIDIA Corporation. Konstantinos G. Derpanis is supported by a Canadian NSERC Discovery grant. He contributed to this work in his personal capacity as an Associate Professor at Ryerson University.


Succinct Interest Points from Unsupervised Inlierness Probability Learning




No releases published


No packages published