Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
157 changes: 157 additions & 0 deletions knapsack
Original file line number Diff line number Diff line change
@@ -0,0 +1,157 @@
// C++ program to solve knapsack problem using
// branch and bound
#include <bits/stdc++.h>
using namespace std;

// Structure for Item which store weight and corresponding
// value of Item
struct Item
{
float weight;
int value;
};

// Node structure to store information of decision
// tree
struct Node
{
// level --> Level of node in decision tree (or index
// in arr[]
// profit --> Profit of nodes on path from root to this
// node (including this node)
// bound ---> Upper bound of maximum profit in subtree
// of this node/
int level, profit, bound;
float weight;
};

// Comparison function to sort Item according to
// val/weight ratio
bool cmp(Item a, Item b)
{
double r1 = (double)a.value / a.weight;
double r2 = (double)b.value / b.weight;
return r1 > r2;
}

// Returns bound of profit in subtree rooted with u.
// This function mainly uses Greedy solution to find
// an upper bound on maximum profit.
int bound(Node u, int n, int W, Item arr[])
{
// if weight overcomes the knapsack capacity, return
// 0 as expected bound
if (u.weight >= W)
return 0;

// initialize bound on profit by current profit
int profit_bound = u.profit;

// start including items from index 1 more to current
// item index
int j = u.level + 1;
int totweight = u.weight;

// checking index condition and knapsack capacity
// condition
while ((j < n) && (totweight + arr[j].weight <= W))
{
totweight += arr[j].weight;
profit_bound += arr[j].value;
j++;
}

// If k is not n, include last item partially for
// upper bound on profit
if (j < n)
profit_bound += (W - totweight) * arr[j].value /
arr[j].weight;

return profit_bound;
}

// Returns maximum profit we can get with capacity W
int knapsack(int W, Item arr[], int n)
{
// sorting Item on basis of value per unit
// weight.
sort(arr, arr + n, cmp);

// make a queue for traversing the node
queue<Node> Q;
Node u, v;

// dummy node at starting
u.level = -1;
u.profit = u.weight = 0;
Q.push(u);

// One by one extract an item from decision tree
// compute profit of all children of extracted item
// and keep saving maxProfit
int maxProfit = 0;
while (!Q.empty())
{
// Dequeue a node
u = Q.front();
Q.pop();

// If it is starting node, assign level 0
if (u.level == -1)
v.level = 0;

// If there is nothing on next level
if (u.level == n-1)
continue;

// Else if not last node, then increment level,
// and compute profit of children nodes.
v.level = u.level + 1;

// Taking current level's item add current
// level's weight and value to node u's
// weight and value
v.weight = u.weight + arr[v.level].weight;
v.profit = u.profit + arr[v.level].value;

// If cumulated weight is less than W and
// profit is greater than previous profit,
// update maxprofit
if (v.weight <= W && v.profit > maxProfit)
maxProfit = v.profit;

// Get the upper bound on profit to decide
// whether to add v to Q or not.
v.bound = bound(v, n, W, arr);

// If bound value is greater than profit,
// then only push into queue for further
// consideration
if (v.bound > maxProfit)
Q.push(v);

// Do the same thing, but Without taking
// the item in knapsack
v.weight = u.weight;
v.profit = u.profit;
v.bound = bound(v, n, W, arr);
if (v.bound > maxProfit)
Q.push(v);
}

return maxProfit;
}

// driver program to test above function
int main()
{
int W = 10; // Weight of knapsack
Item arr[] = {{2, 40}, {3.14, 50}, {1.98, 100},
{5, 95}, {3, 30}};
int n = sizeof(arr) / sizeof(arr[0]);

cout << "Maximum possible profit = "
<< knapsack(W, arr, n);

return 0;
}