-
-
Notifications
You must be signed in to change notification settings - Fork 10.5k
Description
Your current environment
The output of python collect_env.py
Collecting environment information...
uv is set
==============================
System Info
==============================
OS : Ubuntu 22.04.4 LTS (x86_64)
GCC version : (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version : Could not collect
CMake version : Could not collect
Libc version : glibc-2.35
==============================
PyTorch Info
==============================
PyTorch version : 2.8.0+cu128
Is debug build : False
CUDA used to build PyTorch : 12.8
ROCM used to build PyTorch : N/A
==============================
Python Environment
==============================
Python version : 3.10.12 (main, Jan 17 2025, 14:35:34) [GCC 11.4.0] (64-bit runtime)
Python platform : Linux-5.15.0-113-generic-x86_64-with-glibc2.35
==============================
CUDA / GPU Info
==============================
Is CUDA available : True
CUDA runtime version : 12.8.61
CUDA_MODULE_LOADING set to : LAZY
GPU models and configuration :
GPU 0: NVIDIA H100 80GB HBM3
GPU 1: NVIDIA H100 80GB HBM3
GPU 2: NVIDIA H100 80GB HBM3
GPU 3: NVIDIA H100 80GB HBM3
GPU 4: NVIDIA H100 80GB HBM3
GPU 5: NVIDIA H100 80GB HBM3
GPU 6: NVIDIA H100 80GB HBM3
GPU 7: NVIDIA H100 80GB HBM3
Nvidia driver version : 570.86.10
cuDNN version : Could not collect
HIP runtime version : N/A
MIOpen runtime version : N/A
Is XNNPACK available : True
==============================
CPU Info
==============================
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 52 bits physical, 57 bits virtual
Byte Order: Little Endian
CPU(s): 384
On-line CPU(s) list: 0-383
Vendor ID: AuthenticAMD
Model name: AMD EPYC 9654 96-Core Processor
CPU family: 25
Model: 17
Thread(s) per core: 2
Core(s) per socket: 96
Socket(s): 2
Stepping: 1
Frequency boost: enabled
CPU max MHz: 3707.8120
CPU min MHz: 1500.0000
BogoMIPS: 4799.98
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local avx512_bf16 clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin cppc arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq la57 rdpid overflow_recov succor smca fsrm flush_l1d
Virtualization: AMD-V
L1d cache: 6 MiB (192 instances)
L1i cache: 6 MiB (192 instances)
L2 cache: 192 MiB (192 instances)
L3 cache: 768 MiB (24 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-95,192-287
NUMA node1 CPU(s): 96-191,288-383
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Mitigation; safe RET
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines; IBPB conditional; IBRS_FW; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
==============================
Versions of relevant libraries
==============================
[pip3] numpy==2.2.6
[pip3] nvidia-cublas-cu12==12.8.4.1
[pip3] nvidia-cuda-cupti-cu12==12.8.90
[pip3] nvidia-cuda-nvrtc-cu12==12.8.93
[pip3] nvidia-cuda-runtime-cu12==12.8.90
[pip3] nvidia-cudnn-cu12==9.10.2.21
[pip3] nvidia-cufft-cu12==11.3.3.83
[pip3] nvidia-cufile-cu12==1.13.1.3
[pip3] nvidia-curand-cu12==10.3.9.90
[pip3] nvidia-cusolver-cu12==11.7.3.90
[pip3] nvidia-cusparse-cu12==12.5.8.93
[pip3] nvidia-cusparselt-cu12==0.7.1
[pip3] nvidia-nccl-cu12==2.27.3
[pip3] nvidia-nvjitlink-cu12==12.8.93
[pip3] nvidia-nvtx-cu12==12.8.90
[pip3] pyzmq==27.1.0
[pip3] torch==2.8.0+cu128
[pip3] torchaudio==2.8.0+cu128
[pip3] torchvision==0.23.0+cu128
[pip3] transformers==4.56.2
[pip3] triton==3.4.0
[conda] Could not collect
==============================
vLLM Info
==============================
ROCM Version : Could not collect
vLLM Version : 0.11.0rc2.dev71+ge18b714b2 (git sha: e18b714b2)
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 NIC0 NIC1 NIC2 NIC3 NIC4 NIC5 NIC6 NIC7 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NV18 NV18 NV18 NV18 NV18 NV18 NV18 NODE NODE PIX NODE SYS SYS SYS SYS 0-95,192-287 0 N/A
GPU1 NV18 X NV18 NV18 NV18 NV18 NV18 NV18 NODE NODE NODE PIX SYS SYS SYS SYS 0-95,192-287 0 N/A
GPU2 NV18 NV18 X NV18 NV18 NV18 NV18 NV18 NODE PIX NODE NODE SYS SYS SYS SYS 0-95,192-287 0 N/A
GPU3 NV18 NV18 NV18 X NV18 NV18 NV18 NV18 PIX NODE NODE NODE SYS SYS SYS SYS 0-95,192-287 0 N/A
GPU4 NV18 NV18 NV18 NV18 X NV18 NV18 NV18 SYS SYS SYS SYS NODE NODE PIX NODE 96-191,288-383 1 N/A
GPU5 NV18 NV18 NV18 NV18 NV18 X NV18 NV18 SYS SYS SYS SYS NODE NODE NODE PIX 96-191,288-383 1 N/A
GPU6 NV18 NV18 NV18 NV18 NV18 NV18 X NV18 SYS SYS SYS SYS NODE PIX NODE NODE 96-191,288-383 1 N/A
GPU7 NV18 NV18 NV18 NV18 NV18 NV18 NV18 X SYS SYS SYS SYS PIX NODE NODE NODE 96-191,288-383 1 N/A
NIC0 NODE NODE NODE PIX SYS SYS SYS SYS X NODE NODE NODE SYS SYS SYS SYS
NIC1 NODE NODE PIX NODE SYS SYS SYS SYS NODE X NODE NODE SYS SYS SYS SYS
NIC2 PIX NODE NODE NODE SYS SYS SYS SYS NODE NODE X NODE SYS SYS SYS SYS
NIC3 NODE PIX NODE NODE SYS SYS SYS SYS NODE NODE NODE X SYS SYS SYS SYS
NIC4 SYS SYS SYS SYS NODE NODE NODE PIX SYS SYS SYS SYS X NODE NODE NODE
NIC5 SYS SYS SYS SYS NODE NODE PIX NODE SYS SYS SYS SYS NODE X NODE NODE
NIC6 SYS SYS SYS SYS PIX NODE NODE NODE SYS SYS SYS SYS NODE NODE X NODE
NIC7 SYS SYS SYS SYS NODE PIX NODE NODE SYS SYS SYS SYS NODE NODE NODE X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_0
NIC1: mlx5_1
NIC2: mlx5_2
NIC3: mlx5_3
NIC4: mlx5_4
NIC5: mlx5_5
NIC6: mlx5_6
NIC7: mlx5_7
==============================
Environment Variables
==============================
LD_LIBRARY_PATH=/usr/local/cuda-12.8/lib64
CUDA_HOME=/usr/local/cuda
CUDA_HOME=/usr/local/cuda
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY
🐛 Describe the bug
torch.compile generated padding kernel causes an Illegal Memory Access when padding inouts to block-quantized fp8 cutlass kernels on Hopper and DBO enabled. This bug was introduced in #24666.
^[[1;36m(APIServer pid=1)^[[0;0m ^[[1;36m(EngineCore_DP0 pid=276)^[[0;0m ERROR 09-24 13:00:49 [core.py:708] RuntimeError: Failed: CUDA error /tmp/deepep/csrc/kernels/internode_ll.cu:391 'an illegal memory access was encountered'
Minimal Repro instructions:
Credit to @ElizaWszola for finding this smaller repro.
VLLM_USE_DEEP_GEMM=0 VLLM_ALL2ALL_BACKEND=deepep_low_latency vllm serve \
Qwen/Qwen3-30B-A3B-FP8 \
--port 7557 \
--disable-uvicorn-access-log \
--trust-remote-code \
--enable-expert-parallel \
--data-parallel-hybrid-lb \
--tensor-parallel-size 2 \
--data-parallel-size 2 \
--data-parallel-size-local 2 \
--data-parallel-address localhost \
--data-parallel-rpc-port 5555 \
--data-parallel-start-rank 0 \
--enable-eplb \
--eplb-config '{"window_size":"1000",
"step_interval":"3000",
"num_redundant_experts":"32",
"log_balancedness":"False"}' \
--enable-dbo \
--dbo-decode-token-threshold 32 \
--kv_transfer_config '{"kv_connector":"NixlConnector",
"kv_role":"kv_both"}' \
--max_num_seqs 256
Original repro instructions:
I'm deploying vLLM using the llm-d WideEP well-lit-path
See the decoder manifest here:
https://github.com/llm-d/llm-d/blob/4970c7c2703dc23605719491c4fb380973b13517/guides/wide-ep-lws/manifests/modelserver/base/decode.yaml
In particular this is the vLLM launch command.
exec vllm serve \
deepseek-ai/DeepSeek-R1-0528 \
--port 8200 \
--disable-uvicorn-access-log \
--trust-remote-code \
--enable-expert-parallel \
--data-parallel-hybrid-lb \
--tensor-parallel-size $TP_SIZE \
--data-parallel-size $((LWS_GROUP_SIZE * DP_SIZE_LOCAL)) \
--data-parallel-size-local $DP_SIZE_LOCAL \
--data-parallel-address ${LWS_LEADER_ADDRESS} \
--data-parallel-rpc-port 5555 \
--data-parallel-start-rank $START_RANK \
--enable-eplb \
--eplb-config '{"window_size":"1000",
"step_interval":"3000",
"num_redundant_experts":"32",
"log_balancedness":"False"}' \
--enable-dbo \
--dbo-decode-token-threshold 32 \
--kv_transfer_config '{"kv_connector":"NixlConnector",
"kv_role":"kv_both"}'
From investigations of @LucasWilkinson:
the weird part is it is failing in triton_poi_fused.to_copy_add_constant_pad_nd_mean_mul_pow_rsqrt_2
and DBO isnt even running
the fishy thing is torch compile appears to be rounding the input up to 4?
triton_poi_fused__to_copy_add_constant_pad_nd_mean_mul_pow_rsqrt_2_xnumel = 7168*s72 + 7168*(((-1)*s72) % 4)
stream0 = get_raw_stream(0)
triton_poi_fused__to_copy_add_constant_pad_nd_mean_mul_pow_rsqrt_2.run(buf17, buf13, buf12, arg4_1, buf14, arg7_1, s72, triton_poi_fused__to_copy_add_constant_pad_nd_mean_mul_pow_rsqrt_2_xnumel, stream=stream0)
possibly related to
vllm/vllm/model_executor/layers/quantization/utils/fp8_utils.py
Lines 229 to 233 in e6750d0
if self.is_hopper: | |
# We pad unconditionally (even if shape is already divisible by 4) | |
# to support dynamic shape for input_2d.shape[0] in torch.compile | |
x = torch.nn.functional.pad(input_2d, | |
(0, 0, 0, -input_2d.shape[0] % 4)) |
This is failing on a store:
Address | Instruction |
---|---|
0x0000002ad1ea96c0 <+3520> | PRMT R15, R8, 0x5410, R9 |
0x0000002ad1ea96d0 <+3536> | @p2 EXIT |
*> 0x0000002ad1ea96e0 <+3552> | STG.E.128 desc[UR6][R26.64], R12 |
=> 0x0000002ad1ea96f0 <+3568> | EXIT |
Also another failure for DBO
Both TP and DBO need to be enabled for the issue to be triggered:
$ vllm serve deepseek-ai/DeepSeek-V2-Lite --disable-uvicorn-access-log --trust-remote-code --enable-dbo --dbo-decode-token-threshold 32 --tensor-parallel 2
...
Failed: Cuda error /workspace/csrc/custom_all_reduce.cuh:455 'an illegal memory access was encountered'
Failed: Cuda error /workspace/csrc/custom_all_reduce.cuh:455 'an illegal memory access was encountered'
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
Metadata
Metadata
Assignees
Labels
Type
Projects
Status