-
-
Notifications
You must be signed in to change notification settings - Fork 10.5k
Open
Labels
bugSomething isn't workingSomething isn't working
Description
Your current environment
The output of python collect_env.py
==============================
System Info
==============================
OS : Ubuntu 22.04.5 LTS (x86_64)
GCC version : (Ubuntu 11.4.0-1ubuntu1~22.04.2) 11.4.0
Clang version : 14.0.0-1ubuntu1.1
CMake version : version 4.1.0
Libc version : glibc-2.35
==============================
PyTorch Info
==============================
PyTorch version : 2.8.0+cu128
Is debug build : False
CUDA used to build PyTorch : 12.8
ROCM used to build PyTorch : N/A
==============================
Python Environment
==============================
Python version : 3.10.12 (main, Aug 15 2025, 14:32:43) [GCC 11.4.0] (64-bit runtime)
Python platform : Linux-5.15.0-153-generic-x86_64-with-glibc2.35
==============================
CUDA / GPU Info
==============================
Is CUDA available : True
CUDA runtime version : Could not collect
CUDA_MODULE_LOADING set to : LAZY
GPU models and configuration :
GPU 0: NVIDIA B200
GPU 1: NVIDIA B200
GPU 2: NVIDIA B200
GPU 3: NVIDIA B200
GPU 4: NVIDIA B200
GPU 5: NVIDIA B200
GPU 6: NVIDIA B200
GPU 7: NVIDIA B200
Nvidia driver version : 580.82.07
cuDNN version : Could not collect
HIP runtime version : N/A
MIOpen runtime version : N/A
Is XNNPACK available : True
==============================
CPU Info
==============================
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 52 bits physical, 57 bits virtual
Byte Order: Little Endian
CPU(s): 256
On-line CPU(s) list: 0-255
Vendor ID: AuthenticAMD
Model name: AMD EPYC 9575F 64-Core Processor
CPU family: 26
Model: 2
Thread(s) per core: 2
Core(s) per socket: 64
Socket(s): 2
Stepping: 1
Frequency boost: enabled
CPU max MHz: 3300.0000
CPU min MHz: 1500.0000
BogoMIPS: 6590.38
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp ibrs_enhanced vmmcall fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local avx_vnni avx512_bf16 clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin cppc arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq la57 rdpid bus_lock_detect movdiri movdir64b overflow_recov succor smca fsrm avx512_vp2intersect flush_l1d
Virtualization: AMD-V
L1d cache: 6 MiB (128 instances)
L1i cache: 4 MiB (128 instances)
L2 cache: 128 MiB (128 instances)
L3 cache: 512 MiB (16 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-63,128-191
NUMA node1 CPU(s): 64-127,192-255
Vulnerability Gather data sampling: Not affected
Vulnerability Indirect target selection: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB disabled; STIBP disabled; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
==============================
Versions of relevant libraries
==============================
[pip3] flashinfer-python==0.3.1.post1
[pip3] mypy==1.15.0
[pip3] mypy_extensions==1.1.0
[pip3] numpy==2.2.6
[pip3] nvidia-cublas-cu12==12.8.4.1
[pip3] nvidia-cuda-cupti-cu12==12.8.90
[pip3] nvidia-cuda-nvrtc-cu12==12.8.93
[pip3] nvidia-cuda-runtime-cu12==12.8.90
[pip3] nvidia-cudnn-cu12==9.10.2.21
[pip3] nvidia-cudnn-frontend==1.13.0
[pip3] nvidia-cufft-cu12==11.3.3.83
[pip3] nvidia-cufile-cu12==1.13.1.3
[pip3] nvidia-curand-cu12==10.3.9.90
[pip3] nvidia-cusolver-cu12==11.7.3.90
[pip3] nvidia-cusparse-cu12==12.5.8.93
[pip3] nvidia-cusparselt-cu12==0.7.1
[pip3] nvidia-cutlass-dsl==4.2.1
[pip3] nvidia-ml-py==12.575.51
[pip3] nvidia-nccl-cu12==2.27.3
[pip3] nvidia-nvjitlink-cu12==12.8.93
[pip3] nvidia-nvshmem-cu12==3.3.9
[pip3] nvidia-nvtx-cu12==12.8.90
[pip3] pynvml==12.0.0
[pip3] pyzmq==27.0.0
[pip3] torch==2.8.0
[pip3] torchaudio==2.8.0
[pip3] torchvision==0.23.0
[pip3] transformers==4.55.4
[pip3] triton==3.4.0
[conda] Could not collect
==============================
vLLM Info
==============================
ROCM Version : Could not collect
vLLM Version : 0.11.1rc1.dev116+gc36f0aa30 (git sha: c36f0aa30)
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 NIC0 NIC1 NIC2 NIC3 NIC4 NIC5 NIC6 NIC7 NIC8 NIC9 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NV18 NV18 NV18 NV18 NV18 NV18 NV18 NODE PIX NODE NODE NODE NODE SYS SYS SYS SYS 0-63,128-191 0 N/A
GPU1 NV18 X NV18 NV18 NV18 NV18 NV18 NV18 NODE NODE NODE NODE NODE PIX SYS SYS SYS SYS 0-63,128-191 0 N/A
GPU2 NV18 NV18 X NV18 NV18 NV18 NV18 NV18 NODE NODE PIX NODE NODE NODE SYS SYS SYS SYS 0-63,128-191 0 N/A
GPU3 NV18 NV18 NV18 X NV18 NV18 NV18 NV18 PIX NODE NODE NODE NODE NODE SYS SYS SYS SYS 0-63,128-191 0 N/A
GPU4 NV18 NV18 NV18 NV18 X NV18 NV18 NV18 SYS SYS SYS SYS SYS SYS NODE PIX NODE NODE 64-127,192-255 1 N/A
GPU5 NV18 NV18 NV18 NV18 NV18 X NV18 NV18 SYS SYS SYS SYS SYS SYS NODE NODE NODE PIX 64-127,192-255 1 N/A
GPU6 NV18 NV18 NV18 NV18 NV18 NV18 X NV18 SYS SYS SYS SYS SYS SYS NODE NODE PIX NODE 64-127,192-255 1 N/A
GPU7 NV18 NV18 NV18 NV18 NV18 NV18 NV18 X SYS SYS SYS SYS SYS SYS PIX NODE NODE NODE 64-127,192-255 1 N/A
NIC0 NODE NODE NODE PIX SYS SYS SYS SYS X NODE NODE NODE NODE NODE SYS SYS SYS SYS
NIC1 PIX NODE NODE NODE SYS SYS SYS SYS NODE X NODE NODE NODE NODE SYS SYS SYS SYS
NIC2 NODE NODE PIX NODE SYS SYS SYS SYS NODE NODE X NODE NODE NODE SYS SYS SYS SYS
NIC3 NODE NODE NODE NODE SYS SYS SYS SYS NODE NODE NODE X PIX NODE SYS SYS SYS SYS
NIC4 NODE NODE NODE NODE SYS SYS SYS SYS NODE NODE NODE PIX X NODE SYS SYS SYS SYS
NIC5 NODE PIX NODE NODE SYS SYS SYS SYS NODE NODE NODE NODE NODE X SYS SYS SYS SYS
NIC6 SYS SYS SYS SYS NODE NODE NODE PIX SYS SYS SYS SYS SYS SYS X NODE NODE NODE
NIC7 SYS SYS SYS SYS PIX NODE NODE NODE SYS SYS SYS SYS SYS SYS NODE X NODE NODE
NIC8 SYS SYS SYS SYS NODE NODE PIX NODE SYS SYS SYS SYS SYS SYS NODE NODE X NODE
NIC9 SYS SYS SYS SYS NODE PIX NODE NODE SYS SYS SYS SYS SYS SYS NODE NODE NODE X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_0
NIC1: mlx5_1
NIC2: mlx5_2
NIC3: mlx5_3
NIC4: mlx5_4
NIC5: mlx5_5
NIC6: mlx5_6
NIC7: mlx5_11
NIC8: mlx5_12
NIC9: mlx5_13
==============================
Environment Variables
==============================
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY
🐛 Describe the bug
Running MLA models with the flashinfer prefill are giving incorrect outputs when the input exceeds max_num_batched_tokens (when chunked prefill runs).
It looks like something is getting overwritten and it only ever ends up using the first chunk (or the last?). Here's an example deployment to reproduce on 8xB200:
VLLM_ATTENTION_BACKEND=FLASHINFER_MLA VLLM_FLASHINFER_MOE_BACKEND=latency VLLM_USE_FLASHINFER_MOE_FP8=1 vllm serve deepseek-ai/DeepSeek-R1-0528 -tp 8 --max-model-len 8192 --no-enable-prefix-caching --port 8049 --max-num-batched-tokens 512
GSM8k results (expected 93+ %):
|Tasks|Version| Filter |n-shot| Metric | |Value | |Stderr|
|-----|------:|----------------|-----:|-----------|---|-----:|---|-----:|
|gsm8k| 3|flexible-extract| 5|exact_match|↑ |0.6467|± |0.0132|
| | |strict-match | 5|exact_match|↑ |0.6414|± |0.0132|
It gets worse if the chunked prefill size goes smaller. Unsure if it's specific to blackwell right now, but I initially encountered this with 4xB200 running DSR1-FP4 with CUTLASS_MLA, so it might not be flashinfer's fault
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working