Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
98 changes: 78 additions & 20 deletions examples/offline_inference.py
Original file line number Diff line number Diff line change
@@ -1,22 +1,80 @@
from dataclasses import asdict

from vllm import LLM, SamplingParams
from vllm.engine.arg_utils import EngineArgs
from vllm.utils import FlexibleArgumentParser


def get_prompts(num_prompts: int):
# The default sample prompts.
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]

if num_prompts != len(prompts):
prompts = (prompts * ((num_prompts // len(prompts)) + 1))[:num_prompts]

return prompts


def main(args):
# Create prompts
prompts = get_prompts(args.num_prompts)

# Create a sampling params object.
sampling_params = SamplingParams(n=args.n,
temperature=args.temperature,
top_p=args.top_p,
top_k=args.top_k,
max_tokens=args.max_tokens)

# Create an LLM.
# The default model is 'facebook/opt-125m'
engine_args = EngineArgs.from_cli_args(args)
llm = LLM(**asdict(engine_args))

# Generate texts from the prompts.
# The output is a list of RequestOutput objects
# that contain the prompt, generated text, and other information.
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")


if __name__ == '__main__':
parser = FlexibleArgumentParser()
parser = EngineArgs.add_cli_args(parser)
group = parser.add_argument_group("SamplingParams options")
group.add_argument("--num-prompts",
type=int,
default=4,
help="Number of prompts used for inference")
group.add_argument("--max-tokens",
type=int,
default=16,
help="Generated output length for sampling")
group.add_argument('--n',
type=int,
default=1,
help='Number of generated sequences per prompt')
group.add_argument('--temperature',
type=float,
default=0.8,
help='Temperature for text generation')
group.add_argument('--top-p',
type=float,
default=0.95,
help='top_p for text generation')
group.add_argument('--top-k',
type=int,
default=-1,
help='top_k for text generation')

# Sample prompts.
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# Create a sampling params object.
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)

# Create an LLM.
llm = LLM(model="facebook/opt-125m")
# Generate texts from the prompts. The output is a list of RequestOutput objects
# that contain the prompt, generated text, and other information.
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
args = parser.parse_args()
main(args)