Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
68 changes: 1 addition & 67 deletions vllm/executor/cpu_executor.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,9 +2,6 @@
from functools import partial
from typing import Any, Awaitable, List, Optional, Set, Tuple, Union

import vllm.envs as envs
from vllm.config import (CacheConfig, ModelConfig, ParallelConfig,
SchedulerConfig)
from vllm.executor.executor_base import ExecutorAsyncBase, ExecutorBase
from vllm.executor.multiproc_worker_utils import (ProcessWorkerWrapper,
ResultHandler, WorkerMonitor)
Expand All @@ -13,7 +10,7 @@
from vllm.model_executor.layers.sampler import SamplerOutput
from vllm.prompt_adapter.request import PromptAdapterRequest
from vllm.sequence import ExecuteModelRequest
from vllm.utils import (GiB_bytes, get_distributed_init_method, get_open_port,
from vllm.utils import (get_distributed_init_method, get_open_port,
get_vllm_instance_id, make_async)
from vllm.worker.worker_base import WorkerWrapperBase

Expand Down Expand Up @@ -57,13 +54,6 @@ def _init_executor(self) -> None:
os.environ["LOCAL_WORLD_SIZE"] = str(
self.parallel_config.tensor_parallel_size)

self.model_config = _verify_and_get_model_config(self.model_config)
self.cache_config = _verify_and_get_cache_config(self.cache_config)
self.scheduler_config = _verify_and_get_scheduler_config(
self.scheduler_config)
self.parallel_config = _verify_and_get_parallel_config(
self.parallel_config)

# Multiprocessing-based executor does not support multi-node setting.
# Since it only works for single node, we can use the loopback address
# 127.0.0.1 for communication.
Expand Down Expand Up @@ -313,62 +303,6 @@ async def check_health_async(self) -> None:
self.check_health()


def _verify_and_get_model_config(config: ModelConfig) -> ModelConfig:
# Reminder: Please update docs/source/serving/compatibility_matrix.rst
# If the feature combo become valid
if not config.enforce_eager:
logger.warning(
"CUDA graph is not supported on CPU, fallback to the eager "
"mode.")
config.enforce_eager = True
return config


def _verify_and_get_scheduler_config(
config: SchedulerConfig) -> SchedulerConfig:
# Reminder: Please update docs/source/serving/compatibility_matrix.rst
# If the feature combo become valid
if config.chunked_prefill_enabled:
logger.warning("Chunked prefill is not supported on CPU, disable it.")
config.chunked_prefill_enabled = False

return config


def _verify_and_get_cache_config(config: CacheConfig) -> CacheConfig:
# Reminder: Please update docs/source/serving/compatibility_matrix.rst
# If the feature combo become valid
if config.enable_prefix_caching:
logger.warning("Prefix caching is not supported on CPU, disable it.")
config.enable_prefix_caching = False

kv_cache_space = envs.VLLM_CPU_KVCACHE_SPACE

if kv_cache_space >= 0:
if kv_cache_space == 0:
config.cpu_kvcache_space_bytes = 4 * GiB_bytes # type: ignore
logger.warning("Environment variable VLLM_CPU_KVCACHE_SPACE (GB) "
"for CPU backend is not set, using 4 by default.")
else:
config.cpu_kvcache_space_bytes = kv_cache_space * GiB_bytes # type: ignore
else:
raise RuntimeError(
"Invalid environment variable VLLM_CPU_KVCACHE_SPACE"
f" {kv_cache_space}, expect a positive integer value.")

return config


def _verify_and_get_parallel_config(config: ParallelConfig) -> ParallelConfig:
if (config.distributed_executor_backend is not None
and config.distributed_executor_backend != "mp"):
logger.warning(
"%s is not supported on CPU, fallback to mp distributed executor "
"backend.", config.distributed_executor_backend)
config.distributed_executor_backend = "mp"
return config


def _driver_method_invoker(driver, method: str, *args, **kwargs):
return getattr(driver, method)(*args, **kwargs)

Expand Down
60 changes: 60 additions & 0 deletions vllm/platforms/cpu.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,19 @@
from typing import TYPE_CHECKING

import psutil
import torch

from vllm.logger import init_logger

from .interface import Platform, PlatformEnum

if TYPE_CHECKING:
from vllm.config import VllmConfig
else:
VllmConfig = None

logger = init_logger(__name__)


class CpuPlatform(Platform):
_enum = PlatformEnum.CPU
Expand All @@ -18,3 +29,52 @@ def get_device_total_memory(cls, device_id: int = 0) -> int:
@classmethod
def inference_mode(cls):
return torch.no_grad()

@classmethod
def check_and_update_config(cls, vllm_config: VllmConfig) -> None:
import vllm.envs as envs
from vllm.utils import GiB_bytes
model_config = vllm_config.model_config
# Reminder: Please update docs/source/serving/compatibility_matrix.rst
# If the feature combo become valid
if not model_config.enforce_eager:
logger.warning(
"CUDA graph is not supported on CPU, fallback to the eager "
"mode.")
model_config.enforce_eager = True

cache_config = vllm_config.cache_config

if cache_config.enable_prefix_caching:
logger.warning(
"Prefix caching is not supported on CPU, disable it.")
cache_config.enable_prefix_caching = False

kv_cache_space = envs.VLLM_CPU_KVCACHE_SPACE

if kv_cache_space >= 0:
if kv_cache_space == 0:
cache_config.cpu_kvcache_space_bytes = 4 * GiB_bytes # type: ignore
logger.warning(
"Environment variable VLLM_CPU_KVCACHE_SPACE (GB) "
"for CPU backend is not set, using 4 by default.")
else:
cache_config.cpu_kvcache_space_bytes = kv_cache_space * GiB_bytes # type: ignore # noqa
else:
raise RuntimeError(
"Invalid environment variable VLLM_CPU_KVCACHE_SPACE"
f" {kv_cache_space}, expect a positive integer value.")

scheduler_config = vllm_config.scheduler_config
if scheduler_config.chunked_prefill_enabled:
logger.warning(
"Chunked prefill is not supported on CPU, disable it.")
scheduler_config.chunked_prefill_enabled = False

parallel_config = vllm_config.parallel_config
if (parallel_config.distributed_executor_backend is not None
and parallel_config.distributed_executor_backend != "mp"):
logger.warning(("%s is not supported on CPU, fallback to mp "
"distributed executor backend."),
parallel_config.distributed_executor_backend)
parallel_config.distributed_executor_backend = "mp"