Skip to content

Conversation

xuechendi
Copy link
Contributor

@xuechendi xuechendi commented Dec 4, 2024

Test with

python benchmarks/benchmark_serving_guided.py --port 8080 --model meta-llama/Llama-3.2-3B-Instruct --dataset xgrammar_bench --request-rate 32 --backend openai-chat --endpoint /v1/chat/completions --output-len 512 --num-prompts 128 --guided-decoding-ratio 1.0 --save-results

or

python benchmarks/benchmark_serving_guided.py --port 8080 --model meta-llama/Llama-3.2-3B-Instruct --dataset xgrammar_bench --request-rate 32 --output-len 512 --num-prompts 128 --guided-decoding-ratio 1.0 --save-results

Printed Results

Initial test run completed. Starting main benchmark run...
Traffic request rate: 32.0
Burstiness factor: 1.0 (Poisson process)
Maximum request concurrency: None
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 128/128 [00:09<00:00, 13.97it/s]============ Serving Benchmark Result ============
Successful requests:                     128
Benchmark duration (s):                  9.16
Total input tokens:                      39247
Total generated tokens:                  27716
Request throughput (req/s):              13.97
Output token throughput (tok/s):         3025.13
Total Token throughput (tok/s):          7308.85                                                                                                            
---------------Time to First Token----------------
Mean TTFT (ms):                          50.32
Median TTFT (ms):                        37.43                                                                                                              
P99 TTFT (ms):                           269.63
-----Time per Output Token (excl. 1st token)------
Mean TPOT (ms):                          18.31
Median TPOT (ms):                        17.71
P99 TPOT (ms):                           26.15                                                                                                              
---------------Inter-token Latency----------------
Mean ITL (ms):                           16.41
Median ITL (ms):                         12.48
P99 ITL (ms):                            74.89
==================================================

correct_rate(%) 85.15625                                                                                                                                                                                                                                                                                                

saved results:

output = [...],
    "backend": "openai-chat",
    "model_id": "meta-llama/Llama-3.2-3B-Instruct",
    "tokenizer_id": "meta-llama/Llama-3.2-3B-Instruct",
    "num_prompts": 128,
    "request_rate": 32.0,
    "burstiness": 1.0,
    "max_concurrency": null,
    "correct_rate(%)": 68.75,
    "duration": 10.14518375415355,
    "completed": 128,
    "total_input_tokens": 39247,
    "total_output_tokens": 30622,
    "request_throughput": 12.616824209575839,
    "output_throughput": 3018.3780542627446,
    "total_token_throughput": 6886.913208584799,
    "ttft_description": {
        "count": 128.0,
        "mean": 0.08015793653066794,
        "std": 0.08682275402674311,
        "min": 0.01977787702344358,
        "25%": 0.03341050981543958,
        "50%": 0.04755078151356429,
        "75%": 0.07237446604995057,
        "max": 0.40087792300619185
    },
    "tpot_description": {
        "count": 128.0,
        "mean": 0.0217274315153425,
        "std": 0.0010070130538081335,
        "min": 0.0192044503872777,
        "25%": 0.0208703824519354,
        "50%": 0.021955222470058797,
        "75%": 0.02253629300487799,
        "max": 0.023099320525488583
},
...

Copy link

github-actions bot commented Dec 4, 2024

👋 Hi! Thank you for contributing to the vLLM project.
Just a reminder: PRs would not trigger full CI run by default. Instead, it would only run fastcheck CI which starts running only a small and essential subset of CI tests to quickly catch errors. You can run other CI tests on top of those by going to your fastcheck build on Buildkite UI (linked in the PR checks section) and unblock them. If you do not have permission to unblock, ping simon-mo or khluu to add you in our Buildkite org.

Once the PR is approved and ready to go, your PR reviewer(s) can run CI to test the changes comprehensively before merging.

To run CI, PR reviewers can do one of these:

  • Add ready label to the PR
  • Enable auto-merge.

🚀

@xuechendi xuechendi force-pushed the benchmark_serving_structured_output branch from f8143df to 40744bd Compare December 4, 2024 00:35
xuechendi and others added 3 commits December 4, 2024 04:43
Signed-off-by: Chendi Xue <chendi.xue@intel.com>
Signed-off-by: Chendi Xue <chendi.xue@intel.com>
Copy link
Member

@mgoin mgoin left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I've updated this with a few fixes/additions through using it yesterday and today and I think it is in a good state of usability to land. Thanks for the nice work!

@mgoin mgoin added the ready ONLY add when PR is ready to merge/full CI is needed label Dec 4, 2024
@mgoin mgoin merged commit 82eb5ea into vllm-project:main Dec 4, 2024
32 checks passed
sleepwalker2017 pushed a commit to sleepwalker2017/vllm that referenced this pull request Dec 13, 2024
Signed-off-by: Chendi Xue <chendi.xue@intel.com>
Co-authored-by: Michael Goin <michael@neuralmagic.com>
@xuechendi xuechendi deleted the benchmark_serving_structured_output branch December 19, 2024 21:47
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
ready ONLY add when PR is ready to merge/full CI is needed
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants