Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
106 changes: 59 additions & 47 deletions vllm/model_executor/models/hunyuan_v1.py
Original file line number Diff line number Diff line change
Expand Up @@ -889,7 +889,7 @@ def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
return loaded_params


class HunYuanV1Base(nn.Module, SupportsLoRA, SupportsPP, MixtureOfExperts):
class HunyuanV1ModelBase(nn.Module, SupportsLoRA, SupportsPP):
packed_modules_mapping = {
"qkv_proj": [
"q_proj",
Expand Down Expand Up @@ -931,6 +931,56 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
else:
self.lm_head = PPMissingLayer()

def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
model_output = self.model(input_ids, positions, intermediate_tensors,
inputs_embeds)
return model_output

def compute_logits(
self,
hidden_states: torch.Tensor,
) -> Optional[torch.Tensor]:
logits = self.logits_processor(self.lm_head, hidden_states)
return logits

def make_empty_intermediate_tensors(
self, batch_size: int, dtype: torch.dtype,
device: torch.device) -> IntermediateTensors:
return IntermediateTensors({
"hidden_states":
torch.zeros((batch_size, self.config.hidden_size),
dtype=dtype,
device=device),
"residual":
torch.zeros((batch_size, self.config.hidden_size),
dtype=dtype,
device=device),
})

def load_weights(self, weights: Iterable[tuple[str,
torch.Tensor]]) -> set[str]:
loader = AutoWeightsLoader(
self,
skip_prefixes=(["lm_head."]
if self.config.tie_word_embeddings else None),
)
return loader.load_weights(weights)

def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)


class HunYuanMoEV1Base(HunyuanV1ModelBase, MixtureOfExperts):

def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__(vllm_config=vllm_config, prefix=prefix)

# Set MoE hyperparameters
self.expert_weights = []
self.num_expert_groups = 1
Expand Down Expand Up @@ -989,57 +1039,19 @@ def update_physical_experts_metadata(
moe.n_redundant_experts = self.num_redundant_experts
moe.experts.update_expert_map()

def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def get_expert_mapping(self) -> list[tuple[str, str, int, str]]:
return self.model.get_expert_mapping()

def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
model_output = self.model(input_ids, positions, intermediate_tensors,
inputs_embeds)
return model_output

def compute_logits(
self,
hidden_states: torch.Tensor,
) -> Optional[torch.Tensor]:
logits = self.logits_processor(self.lm_head, hidden_states)
return logits
class HunYuanDenseV1Base(HunyuanV1ModelBase):

def make_empty_intermediate_tensors(
self, batch_size: int, dtype: torch.dtype,
device: torch.device) -> IntermediateTensors:
return IntermediateTensors({
"hidden_states":
torch.zeros((batch_size, self.config.hidden_size),
dtype=dtype,
device=device),
"residual":
torch.zeros((batch_size, self.config.hidden_size),
dtype=dtype,
device=device),
})

def load_weights(self, weights: Iterable[tuple[str,
torch.Tensor]]) -> set[str]:
loader = AutoWeightsLoader(
self,
skip_prefixes=(["lm_head."]
if self.config.tie_word_embeddings else None),
)
return loader.load_weights(weights)

def get_expert_mapping(self) -> list[tuple[str, str, int, str]]:
return self.model.get_expert_mapping()
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__(vllm_config=vllm_config, prefix=prefix)


class HunYuanDenseV1ForCausalLM(HunYuanV1Base):
class HunYuanDenseV1ForCausalLM(HunYuanDenseV1Base):
pass


class HunYuanMoEV1ForCausalLM(HunYuanV1Base):
pass
class HunYuanMoEV1ForCausalLM(HunYuanMoEV1Base):
pass