FDM estimates derivatives with finite differences. See also FiniteDifferences.jl.
- Installation
- Multivariate Derivatives
- Scalar Derivatives
- Testing Sensitivities in a Reverse-Mode Automatic Differentation Framework
FDM requires Python 3.6 or higher.
pip install fdm
from fdm import gradient, jacobian, jvp, hvp
For the purpose of illustration, let us consider a quadratic function:
>>> a = np.random.randn(3, 3); a = a @ a.T
>>> a
array([[ 3.57224794, 0.22646662, -1.80432262],
[ 0.22646662, 4.72596213, 3.46435663],
[-1.80432262, 3.46435663, 3.70938152]])
>>> def f(x):
... return 0.5 * x @ a @ x
Consider the following input value:
>>> x = np.array([1.0, 2.0, 3.0])
>>> grad = gradient(f)
>>> grad(x)
array([-1.38778668, 20.07146076, 16.25253519])
>>> a @ x
array([-1.38778668, 20.07146076, 16.25253519])
>>> jac = jacobian(f)
>>> jac(x)
array([[-1.38778668, 20.07146076, 16.25253519]])
>>> a @ x
array([-1.38778668, 20.07146076, 16.25253519])
But jacobian
also works for multi-valued functions.
>>> def f2(x):
... return a @ x
>>> jac2 = jacobian(f2)
>>> jac2(x)
array([[ 3.57224794, 0.22646662, -1.80432262],
[ 0.22646662, 4.72596213, 3.46435663],
[-1.80432262, 3.46435663, 3.70938152]])
>>> a
array([[ 3.57224794, 0.22646662, -1.80432262],
[ 0.22646662, 4.72596213, 3.46435663],
[-1.80432262, 3.46435663, 3.70938152]])
In the scalar case, jvp
computes directional derivatives:
>>> v = np.array([0.5, 0.6, 0.7]) # A direction
>>> dir_deriv = jvp(f, v)
>>> dir_deriv(x)
22.725757753354657
>>> np.sum(grad(x) * v)
22.72575775335481
In the multivariate case, jvp
generalises to Jacobian-vector products:
>>> prod = jvp(f2, v)
>>> prod(x)
array([0.65897811, 5.37386023, 3.77301973])
>>> a @ v
array([0.65897811, 5.37386023, 3.77301973])
>>> prod = hvp(f, v)
>>> prod(x)
array([[0.6589781 , 5.37386023, 3.77301973]])
>>> 0.5 * (a + a.T) @ v
array([0.65897811, 5.37386023, 3.77301973])
>>> from fdm import central_fdm
Let's try to estimate the first derivative of np.sin
at 1
with a
second-order method.
>>> central_fdm(order=2, deriv=1)(np.sin, 1) - np.cos(1)
-1.2914319613699377e-09
And let's try to estimate the second derivative of np.sin
at 1
with a
third-order method.
>>> central_fdm(order=3, deriv=2)(np.sin, 1) + np.sin(1)
1.6342919018086377e-08
Hm.
Let's check the accuracy of this third-order method.
The step size and accuracy of the method are computed upon calling
FDM.estimate
.
>>> central_fdm(order=3, deriv=2).estimate(np.sin, 1).acc
5.476137293912896e-06
We might want a little more accuracy. Let's check the accuracy of a fifth-order method.
>>> central_fdm(order=5, deriv=2).estimate(np.sin, 1).acc
7.343652562575157e-10
And let's estimate the second derivative of np.sin
at 1
with a
fifth-order method.
>>> central_fdm(order=5, deriv=2)(np.sin, 1) + np.sin(1)
-1.7121615236703747e-10
Hooray!
Finally, let us verify that increasing the order generally increases the accuracy.
>>> for i in range(3, 10):
... print(central_fdm(order=i, deriv=2)(np.sin, 1) + np.sin(1))
1.6342919018086377e-08
8.604865264771888e-09
-1.7121615236703747e-10
8.558931341440257e-12
-2.147615418834903e-12
6.80566714095221e-13
-1.2434497875801753e-14
Consider the function
def mul(a, b):
return a * b
and its sensitivity
def s_mul(s_y, y, a, b):
return s_y * b, a * s_y
The sensitivity s_mul
takes in the sensitivity s_y
of the output y
,
the output y
, and the arguments of the function mul
; and returns a tuple
containing the sensitivities with respect to a
and b
.
Then function check_sensitivity
can be used to assert that the
implementation of s_mul
is correct:
>>> from fdm import check_sensitivity
>>> check_sensitivity(mul, s_mul, (2, 3)) # Test at arguments `2` and `3`.
Suppose that the implementation were wrong, for example
def s_mul_wrong(s_y, y, a, b):
return s_y * b, b * s_y # Used `b` instead of `a` for the second sensitivity!
Then check_sensitivity
should throw an AssertionError
:
>>> check_sensitivity(mul, s_mul, (2, 3))
AssertionError: Sensitivity of argument 2 of function "mul" did not match numerical estimate.