NumCpp: A Templatized Header Only C++ Implementation of the Python NumPy Library
Author: David Pilger dpilger26@gmail.com
Copyright 2018 David Pilger
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files(the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Compiled and tested with Visual Studio 2017, and g++ 7.3.0, with Boost version 1.68.
This quick start guide is meant as a very brief overview of some of the things that can be done with NumCpp. For a full breakdown of everything available in the NumCpp library please visit the Full Documentation.
The main data structure in NumpCpp is the NdArray
. It is inherently a 2D array class, with 1D arrays being implemented as 1xN arrays. There is also a DataCube
class that is provided as a convenience container for storing an array of 2D NdArray
s, but it has limited usefulness past a simple container.
NumPy | NumCpp |
---|---|
a = np.array([[1, 2], [3, 4], [5, 6]]) |
nc::NdArray<int> a = { {1, 2}, {3, 4}, {5, 6} } |
a.reshape([2, 3]) |
a.reshape(2, 3) |
a.astype(np.double) |
a.astype<double>() |
Many initializer functions are provided that return NdArray
s for common needs.
NumPy | NumCpp |
---|---|
np.linspace(1, 10, 5) |
nc::linspace<dtype>(1, 10, 5) |
np.arange(3, 7) |
nc::arrange<dtype>(3, 7) |
np.eye(4) |
nc::eye<dtype>(4) |
np.zeros([3, 4]) |
nc::zeros<dtype>(3, 4) |
nc::NdArray<dtype>(3, 4) a = 0 |
|
np.ones([3, 4]) |
nc::ones<dtype>(3, 4) |
nc::NdArray<dtype>(3, 4) a = 1 |
|
np.nans([3, 4]) |
nc::nans<double>(3, 4) |
nc::NdArray<double>(3, 4) a = nc::constants::nan |
|
np.empty([3, 4]) |
nc::empty<dtype>(3, 4) |
nc::NdArray<dtype>(3, 4) a; |
NumpCpp offers NumPy style slicing and broadcasting.
NumPy | NumCpp |
---|---|
a[2, 3] |
a(2, 3) |
a[2:5, 5:8] |
a(nc::Slice(2, 5), nc::Slice(5, 8)) |
a({2, 5}, {5, 8}) |
|
a[:, 7] |
a(a.rSlice(), 7) |
a[a > 5] |
a[a > 50] |
a[a > 5] = 0 |
a.putMask(a > 50, 666) |
The random module provides simple ways to create random arrays.
NumPy | NumCpp |
---|---|
np.random.seed(666) |
nc::Random<>::seed(666) |
np.random.randn(3, 4) |
nc::Random<double>::randn(nc::Shape(3,4)) |
nc::Random<double>::randn({3, 4}) |
|
np.random.randint(0, 10, [3, 4]) |
nc::Random<int>::randInt(nc::Shape(3,4),0,10) |
nc::Random<int>::randInt({3, 4},0,10) |
|
np.random.rand(3, 4) |
nc::Random<double>::rand(nc::Shape(3,4)) |
nc::Random<double>::rand({3, 4}) |
|
np.random.choice(a, 3) |
nc::Random<dtype>::choice(a, 3) |
Many ways to concatenate NdArray
are available.
NumPy | NumCpp |
---|---|
np.stack([a, b, c], axis=0) |
nc::stack({a, b, c}, nc::Axis::ROW) |
np.vstack([a, b, c]) |
nc::vstack({a, b, c}) |
np.hstack([a, b, c]) |
nc::hstack({a, b, c}) |
np.append(a, b, axis=1) |
nc::append(a, b, nc::Axis::COL) |
The following return new NdArray
s.
NumPy | NumCpp |
---|---|
np.diagonal(a) |
nc::diagonal(a) |
np.triu(a) |
nc::triu(a) |
np.tril(a) |
nc::tril(a) |
np.flip(a, axis=0) |
nc::flip(a, nc::Axis::ROW) |
np.flipud(a) |
nc::flipud(a) |
np.fliplr(a) |
nc::fliplr(a) |
NumpCpp follows the idioms of the C++ STL providing iterator pairs to iterate on arrays in different fashions.
NumPy | NumCpp |
---|---|
for value in a |
for(auto it = a.begin(); it < a.end(); ++it) |
for(auto& value : a) |
Logical FUNCTIONS in NumpCpp behave the same as NumPy.
NumPy | NumCpp |
---|---|
np.where(a > 5, a, b) |
nc::where(a > 5, a, b) |
np.any(a) |
nc::any(a) |
np.all(a) |
nc::all(a) |
np.logical_and(a, b) |
nc::logical_and(a, b) |
np.logical_or(a, b) |
nc::logical_or(a, b) |
np.isclose(a, b) |
nc::isclose(a, b) |
np.allclose(a, b) |
nc::allclose(a, b) |
NumPy | NumCpp |
---|---|
np.equal(a, b) |
nc::equal(a, b) |
a == b |
|
np.not_equal(a, b) |
nc::not_equal(a, b) |
a != b |
|
np.nonzero(a) |
nc::nonzero(a) |
NumPy | NumCpp |
---|---|
np.min(a) |
nc::min(a) |
np.max(a) |
nc::max(a) |
np.argmin(a) |
nc::argmin(a) |
np.argmax(a) |
nc::argmax(a) |
np.sort(a, axis=0) |
nc::sort(a, nc::Axis::ROW) |
np.argsort(a, axis=1) |
nc::argsort(a, nc::Axis::COL) |
np.unique(a) |
nc::unique(a) |
np.setdiff1d(a, b) |
nc::setdiff1d(a, b) |
np.diff(a) |
nc::diff(a) |
Reducers accumulate values of NdArray
s along specified axes. When no axis is specified, values are accumulated along all axes.
NumPy | NumCpp |
---|---|
np.sum(a) |
nc::sum<dtypeOut>(a) |
np.sum(a, axis=0) |
nc::sum<dtypeOut>(a, nc::Axis::ROW) |
np.prod(a) |
nc::prod<dtypeOut>(a) |
np.prod(a, axis=0) |
nc::prod<dtypeOut>(a, nc::Axis::ROW) |
np.mean(a) |
nc::mean(a) |
np.mean(a, axis=0) |
nc::mean(a, nc::Axis::ROW) |
np.count_nonzero(a) |
nc::count_nonzero(a) |
np.count_nonzero(a, axis=0) |
nc::count_nonzero(a, nc::Axis::ROW) |
Print and file output methods. All NumpCpp classes support a print()
method and <<
stream operators.
NumPy | NumCpp |
---|---|
print(a) | a.print() |
std::cout << a |
|
a.tofile(filename, sep=’\n’) |
a.tofile(filename, "\n") |
np.fromfile(filename, sep=’\n’) |
nc::fromfile<dtype>(filename, \n") |
np.dump(a, filename) |
nc::dump(a, filename) |
np.load(filename) |
nc::load<dtype>(filename) |
NumpCpp universal functions are provided for a large set number of mathematical functions.
NumPy | NumCpp |
---|---|
np.abs(a) |
nc::abs(a) |
np.sign(a) |
nc::sign(a) |
np.remainder(a, b) |
nc::remainder<dtypeOut>(a, b) |
np.clip(a, 3, 8) |
nc::clip(a, 3, 8) |
np.interp(x, xp, fp) |
nc::interp(x, xp, fp) |
NumPy | NumCpp |
---|---|
np.exp(a) |
nc::exp(a) |
np.expm1(a) |
nc::expm1(a) |
np.log(a) |
nc::log(a) |
np.log1p(a) |
nc::log1p(a) |
NumPy | NumCpp |
---|---|
np.power(a, 4) |
nc::power<dtypeOut>(a, 4) |
np.sqrt(a) |
nc::sqrt(a) |
np.square(a) |
nc::square(a) |
np.cbrt(a) |
nc::cbrt(a) |
NumPy | NumCpp |
---|---|
np.sin(a) |
nc::sin(a) |
np.cos(a) |
nc::cos(a) |
np.tan(a) |
nc::tan(a) |
NumPy | NumCpp |
---|---|
np.sinh(a) |
nc::sinh(a) |
np.cosh(a) |
nc::cosh(a) |
np.tanh(a) |
nc::tanh(a) |
NumPy | NumCpp |
---|---|
np.isnan(a) |
nc::isnan(a) |
np.isinf(a) |
nc::isinf(a) |
NumPy | NumCpp |
---|---|
np.linalg.norm(a) |
nc::norm<dtypeOut>(a) |
np.dot(a, b) |
nc::dot<dtypeOut>(a, b) |
np.linalg.det(a) |
nc::linalg::det(a) |
np.linalg.inv(a) |
nc::linalg::inv(a) |
np.linalg.lstsq(a, b) |
nc::linalg::lstsq(a, b) |
np.linalg.matrix_power(a, 3) |
nc::linalg::matrix_power<dtypeOut>(a, 3) |
Np.linalg..multi_dot(a, b, c) |
nc::linalg::multi_dot<dtypeOut>({a, b, c}) |
np.linalg.svd(a) |
nc::linalg::svd(a) |