Skip to content

xiaoguanyu/streamingpro

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 

Repository files navigation

StreamingPro

This document is for StreamingPro developers. User's manual is now on its way.

Introduction

StreamingPro is not a complete application, but rather a code library and API that can easily be used to build your streaming application which may run on Spark Streaming.

StreamingPro also make it possible that all you should do to build streaming program is assembling components(eg. SQL Component) in configuration file. Of source , if you are a geek who like do every thing by programing,we also encourage you use API provided by StreamingPro which is more easy to use then original API designed by Spark/Storm.

Features

  • Setup job flows with configuration
  • Supports Add/Update/Remove job flows dynamically at runtime via Rest API
  • Brand new API to make program modularized
  • Support for job flows building by writing SQL

Notes:

Feature 2 is available only when Spark Streaming receives data from Kafka using Direct Approach (No Receivers) mode.

Setup Project

Since this project depends on

you should install them in your local maven repository/private maven repository to resolve the dependency issue.

Step 1

git clone https://github.com/allwefantasy/csdn_common.git
cd csdn_common
mvn -DskipTests clean install

step 2

git clone https://github.com/allwefantasy/ServiceFramework.git
cd ServiceFramework
mvn -DskipTests clean install

step 3

git clone https://github.com/allwefantasy/ServiceframeworkDispatcher.git
cd ServiceframeworkDispatcher
mvn -DskipTests clean install

step 4

git clone https://github.com/allwefantasy/streamingpro.git

step 5

Import StreamingPro to your IDE.

Tips:

StreamingPro is a maven project and Intellj Idea is recommended cause it have more powerful scala support which make your coding life more easy.

Run Your First Application

First make sure you have selected debug profile in your IDE,then you can run:

streaming.core.LocalStreamingApp

when stared , you can see some message like follow:

+---+---+
|  a|  b|
+---+---+
|  3|  5|
+---+---+

Congratulations, everything is fine and you just run your first Spark Streaming Application.

You can find strategy.v2.json in src/main/resource-debug directory which describe what your streaming application have done .

Suppose your streaming data source is Kafka,and you need metadata from MySQL to process lines from Kafka. Then you can do like follow:

  1. create new job flow named test.
  2. create new dataSource named testJoinTable
  3. declare table testJoinTable in test.ref
  4. configure MockInputStreamCompositor to mock kafka source
  5. configure SingleColumnJSONCompositor to convert string to Json string with key named a
  6. configure JSONTableCompositor to create sql table test
  7. configure multi SQLCompositor to process data , and you can use table testJoinTable in sql.
  8. finally, configure SQLPrintOutputCompositor to print result.

here is the detail of configuration:

{
  "test": {
    "desc": "测试",
    "strategy": "streaming.core.strategy.SparkStreamingStrategy",
    "algorithm": [],
    "ref": [
      "testJoinTable"
    ],
    "compositor": [
      {
        "name": "streaming.core.compositor.spark.streaming.source.MockInputStreamCompositor",
        "params": [{"data1":["1","2","3"]}]
      },
      {
        "name": "streaming.core.compositor.spark.streaming.transformation.SingleColumnJSONCompositor",
        "params": [
          {
            "name": "a"
          }
        ]
      },
      {
        "name": "streaming.core.compositor.spark.streaming.transformation.JSONTableCompositor",
        "params": [
          {
            "tableName": "test"
          }
        ]
      },
      {
        "name": "streaming.core.compositor.spark.streaming.transformation.SQLCompositor",
        "params": [
          {
            "sql": "select a, \"5\" as b from test",
            "outputTableName": "test2"
          }
        ]
      },
      {
        "name": "streaming.core.compositor.spark.streaming.transformation.SQLCompositor",
        "params": [
          {
            "sql": "select t2.a,t2.b from test2 t2, testJoinTable t3 where t2.a = t3.a"
          }
        ]
      },
      {
        "name": "streaming.core.compositor.spark.streaming.output.SQLPrintOutputCompositor",
        "params": [
          {
          }
        ]
      }
    ],
    "configParams": {
    }
  },
  "testJoinTable": {
    "desc": "测试",
    "strategy": "streaming.core.strategy.SparkStreamingRefStrategy",
    "algorithm": [],
    "ref": [],
    "compositor": [
      {
        "name": "streaming.core.compositor.spark.source.MockJsonCompositor",
        "params": [
          {"a":"3"},
          {"a":"4"},
          {"a":"5"}
        ]
      },
      {
        "name": "streaming.core.compositor.spark.transformation.JSONTableCompositor",
        "params": [
          {
            "tableName": "testJoinTable"
          }
        ]
      }
    ],
    "configParams": {
    }
  }
}

Dynamically add Job via Rest API

curl -XPOST 'http://127.0.0.1:9003/job/add?name=newjob' -d '
{
    "desc": "测试",
    "strategy": "streaming.core.strategy.SparkStreamingStrategy",
    "algorithm": [],
    "ref": [],
    "compositor": [
      {
        "name": "streaming.core.compositor.spark.streaming.source.MockInputStreamCompositor",
        "params": [{"data1":["me","you","her"]}]
      },
      {
        "name": "streaming.core.compositor.spark.streaming.transformation.SingleColumnJSONCompositor",
        "params": [
          {
            "name": "a"
          }
        ]
      },
      {
        "name": "streaming.core.compositor.spark.streaming.transformation.JSONTableCompositor",
        "params": [
          {
            "tableName": "test"
          }
        ]
      },
      {
        "name": "streaming.core.compositor.spark.streaming.transformation.SQLCompositor",
        "params": [
          {
            "sql": "select a, \"5\" as b from test",
            "outputTableName": "test2"
          }
        ]
      },      
      {
        "name": "streaming.core.compositor.spark.streaming.output.SQLPrintOutputCompositor",
        "params": [
          {
          }
        ]
      }
    ],
    "configParams": {
    }
  }
'

How To Add New Compositor

In StreamingPro,every transformation can be implemented by Compositor. Suppose you wanna implements map function in Spark Streaming and convert a line into json string.

Create a class SingleColumnJSONCompositor which extends BaseMapCompositor

class SingleColumnJSONCompositor[T] extends BaseMapCompositor[T, String, String] with CompositorHelper {

  def name = {
    config("name", _configParams)
  }

  override def map: (String) => String = {
    require(name.isDefined, "please set column name by variable `name` in config file")
    val _name = name.get
    (line: String) => {
      val res = new JSONObject()
      res.put(_name, line)
      res.toString
    }
  }
}

override map method and do anything you want to the line putted by Streaming program.

or you want add repartition function, do like follow:

class RepartitionCompositor[T, S: ClassTag, U: ClassTag] extends Compositor[T] with CompositorHelper{

   protected var _configParams: util.List[util.Map[Any, Any]] = _

   val logger = Logger.getLogger(classOf[SQLCompositor[T]].getName)

   override def initialize(typeFilters: util.List[String], configParams: util.List[util.Map[Any, Any]]): Unit = {
     this._configParams = configParams
   }

   def num = {
     config[Int]("num",_configParams)
   }

   override def result(alg: util.List[Processor[T]], ref: util.List[Strategy[T]], middleResult: util.List[T], params: util.Map[Any, Any]): util.List[T] = {
     val dstream = middleResult(0).asInstanceOf[DStream[S]]
     val _num = num.get
     val newDstream = dstream.repartition(_num)
     List(newDstream.asInstanceOf[T])
   }

 }

Add other Runtime support

For now, StreamingPro can run on Spark Streaming. If you want it runs on other platform like Storm/Fink, you can do something follow:

 class StormRuntime extends StreamingRuntime with PlatformManagerListener  

About

Build Spark Streaming Application by SQL

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Scala 70.1%
  • Java 29.9%