Skip to content

ychfan/wdsr

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Wide Activation for Efficient Image and Video Super-Resolution

Reloaded PyTorch implementation of WDSR, BMVC 2019 [pdf].

Previous Implementations

Performance

Small models

Networks Parameters DIV2K (val) Set5 B100 Urban100 Pre-trained Eval cmd Train cmd
WDSR x2 1,190,100 34.76 38.08 32.23 32.34 Download
detailspython trainer.py --dataset div2k --eval_datasets div2k set5 bsds100 urban100 --model wdsr --scale 2 --job_dir X --ckpt ./wdsr_x2/epoch_30.pth --eval_only
detailspython trainer.py --dataset div2k --eval_datasets div2k set5 bsds100 urban100 --model wdsr --scale 2 --job_dir ./wdsr_x2
WDSR x3 1,195,605 31.03 34.45 29.14 28.33 Download
detailspython trainer.py --dataset div2k --eval_datasets div2k set5 bsds100 urban100 --model wdsr --scale 3 --job_dir X --ckpt ./wdsr_x3/epoch_30.pth --eval_only
detailspython trainer.py --dataset div2k --eval_datasets div2k set5 bsds100 urban100 --model wdsr --scale 3 --job_dir ./wdsr_x3
WDSR x4 1,203,312 29.04 32.22 27.61 26.21 Download
detailspython trainer.py --dataset div2k --eval_datasets div2k set5 bsds100 urban100 --model wdsr --scale 4 --job_dir X --ckpt ./wdsr_x4/epoch_30.pth --eval_only
detailspython trainer.py --dataset div2k --eval_datasets div2k set5 bsds100 urban100 --model wdsr --scale 4 --job_dir ./wdsr_x4

Large models

Networks Parameters DIV2K (val) Set5 B100 Urban100 Pre-trained Eval cmd Train cmd
WDSR x2 37,808,180 35.06 38.28 32.38 33.07 Download
detailspython trainer.py --dataset div2k --eval_datasets div2k set5 bsds100 urban100 --model wdsr --num_blocks 32 --num_residual_units 128 --scale 2 --job_dir X --ckpt ./wdsr_x2/epoch_30.pth --eval_only
detailspython trainer.py --dataset div2k --eval_datasets div2k set5 bsds100 urban100 --model wdsr --num_blocks 32 --num_residual_units 128 --scale 2 --job_dir ./wdsr_x2
WDSR x3 37,826,645 31.34 34.76 29.32 28.94 Download
detailspython trainer.py --dataset div2k --eval_datasets div2k set5 bsds100 urban100 --model wdsr --num_blocks 32 --num_residual_units 128 --scale 3 --job_dir X --ckpt ./wdsr_x3/epoch_30.pth --eval_only
detailspython trainer.py --dataset div2k --eval_datasets div2k set5 bsds100 urban100 --model wdsr --num_blocks 32 --num_residual_units 128 --scale 3 --job_dir ./wdsr_x3
WDSR x4 37,852,496 29.33 32.58 27.78 26.79 Download
detailspython trainer.py --dataset div2k --eval_datasets div2k set5 bsds100 urban100 --model wdsr --num_blocks 32 --num_residual_units 128 --scale 4 --job_dir X --ckpt ./wdsr_x4/epoch_30.pth --eval_only
detailspython trainer.py --dataset div2k --eval_datasets div2k set5 bsds100 urban100 --model wdsr --num_blocks 32 --num_residual_units 128 --scale 4 --job_dir ./wdsr_x4

Usage

Dependencies

conda install pytorch torchvision -c pytorch
conda install tensorboard h5py scikit-image
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" git+https://github.com/NVIDIA/apex.git

Evaluation

python trainer.py --dataset div2k --eval_datasets div2k set5 bsds100 urban100 --model wdsr --scale 2 --job_dir ./wdsr_x2 --eval_only
# or
python trainer.py --dataset div2k --eval_datasets div2k set5 bsds100 urban100 --model wdsr --scale 2 --job_dir ./wdsr_x2 --ckpt ./latest.pth --eval_only

Datasets

DIV2K dataset: DIVerse 2K resolution high quality images as used for the NTIRE challenge on super-resolution @ CVPR 2017

Benchmarks (Set5, BSDS100, Urban100)

Download and organize data like:

wdsr/data/DIV2K/
├── DIV2K_train_HR
├── DIV2K_train_LR_bicubic
│   └── X2
│   └── X3
│   └── X4
├── DIV2K_valid_HR
└── DIV2K_valid_LR_bicubic
    └── X2
    └── X3
    └── X4
wdsr/data/Set5/*.png
wdsr/data/BSDS100/*.png
wdsr/data/Urban100/*.png

About

Wide Activation for Efficient Image and Video Super-Resolution

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages