Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Release 0.8.0 #69

Merged
merged 2 commits into from
Feb 28, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -3,3 +3,4 @@
*.jl.mem
/Manifest.toml
/docs/build
/jet
4 changes: 2 additions & 2 deletions Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "AnovaBase"
uuid = "946dddda-6a23-4b48-8e70-8e60d9b8d680"
authors = ["Yu-Fong Peng <sciphypar@gmail.com>"]
version = "0.7.5"
version = "0.8.0"

[deps]
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
Expand All @@ -16,4 +16,4 @@ Distributions = "0.23, 0.24, 0.25"
Reexport = "0.2, 1"
StatsBase = "0.33, 0.34"
StatsModels = "0.7"
julia = "1.6, 1.7, 1.8, 1.9"
julia = "1.6, 1.7, 1.8, 1.9, 1.10"
62 changes: 41 additions & 21 deletions src/AnovaBase.jl
Original file line number Diff line number Diff line change
Expand Up @@ -59,28 +59,27 @@ abstract type AnovaModel{M, N} <: StatisticalModel end
"""
NestedModels{M, N} <: AnovaModel{M, N}

A wrapper of nested models for conducting ANOVA.
A wrapper of nested models of the same types for conducting ANOVA.
* `M` is a type of regression model.
* `N` is the number of models.

# Fields
* `model`: a tuple of models.

# Constructors
NestedModels{M}(model...) where M
NestedModels{M}(model::T) where {M, N, T <: NTuple{N, M}}
NestedModels(model::Vararg{M, N}) where {M, N}
NestedModels(model::NTuple{N, M}) where {M, N}
"""
struct NestedModels{M, N} <: AnovaModel{M, N}
model::Tuple

NestedModels{M}(model::T) where {M, N, T <: NTuple{N, M}} = new{M, N}(model)
model::NTuple{N, M}
end
NestedModels{M}(model...) where M = NestedModels{M}(model)
NestedModels{M}(model::T...) where {M, T <: Tuple} = throw(ArgumentError("Some models in $T are not subtype of $M"))
NestedModels(model::Vararg{M, N}) where {M, N} = NestedModels(model)
NestedModels(model::T) where {T <: Tuple} = throw(ArgumentError("`NestedModels` only accept models of the same type; use `MixedAovModels` instead."))
NestedModels(model...) = throw(ArgumentError("`NestedModels` only accept models of the same type; use `MixedAovModels` instead."))
"""
MixedAovModels{M, N} <: AnovaModel{M, N}

A wrapper of nested models with multiple types for conducting ANOVA.
A wrapper of nested models of multiple types for conducting ANOVA.
* `M` is a union type of regression models.
* `N` is the number of models.

Expand All @@ -94,18 +93,33 @@ A wrapper of nested models with multiple types for conducting ANOVA.
struct MixedAovModels{M, N} <: AnovaModel{M, N}
model::Tuple
end
MixedAovModels{M}(model...) where M = MixedAovModels{M}(model)
MixedAovModels{M}(model::T) where {M, T <: Tuple} = all(m -> isa(m, M), model) ? MixedAovModels{M, length(model)}(model) : throw(ArgumentError("Some models in are not subtype of $M"))
MixedAovModels(model...) = MixedAovModels{Union{typeof.(model)...}, length(model)}(model)
MixedAovModels(model::Vararg{M, N}) where {M, N} = throw(ArgumentError("`MixedAovModels` only accept models of different types; use `NestedModels` instead."))
MixedAovModels(model::T) where {T <: Tuple} = MixedAovModels{Union{T.parameters...}, length(model)}(model)
MixedAovModels(model::NTuple{N, M}) where {M, N} = throw(ArgumentError("`MixedAovModels` only accept models of different types; use `NestedModels` instead."))
"""
const MultiAovModels{M, N} = Union{NestedModels{M, N}, MixedAovModels{M, N}} where {M, N}

Wrappers of mutiple models.
"""
const MultiAovModels{M, N} = Union{NestedModels{M, N}, MixedAovModels{M, N}} where {M, N}
"""
MultiAovModels(model::NTuple{N, M}) where {M, N} -> NestedModels{M, N}
MultiAovModels(model::Vararg{M, N}) where {M, N} -> NestedModels{M, N}
MultiAovModels(model::T) where {T <: Tuple} -> MixedAovModels
MultiAovModels(model...) -> MixedAovModels

Construct `NestedModels` or `MixedAovModels` based on model types.
"""
MultiAovModels(model::NTuple{N, M}) where {M, N} = NestedModels(model)
MultiAovModels(model::Vararg{M, N}) where {M, N} = NestedModels(model)
MultiAovModels(model::T) where {T <: Tuple} = MixedAovModels(model)
MultiAovModels(model...) = MixedAovModels(model)

"""
FullModel{M, N} <: AnovaModel{M, N}

A wrapper of full model for conducting ANOVA.
A wrapper of a regression model for conducting ANOVA.
* `M` is a type of regression model.
* `N` is the number of predictors.

Expand All @@ -130,7 +144,7 @@ end
function FullModel(model::RegressionModel, type::Int, null::Bool, test_intercept::Bool)
err1 = ArgumentError("Invalid set of model specification for ANOVA; not enough variables provided.")
#err2 = ArgumentError("Invalid set of model specification for ANOVA; all coefficents are aliased with 1.")
preds = predictors(model)
preds = predictors(model)::TupleTerm
pred_id = collect(eachindex(preds))
hasintercept(preds) || popfirst!(pred_id)
isempty(pred_id) && throw(err1) # ~ 0
Expand Down Expand Up @@ -174,12 +188,15 @@ Returned object of `anova`.
* `otherstat`: `NamedTuple` contained extra statistics.

# Constructor
AnovaResult{T}(anovamodel::M,
AnovaResult(
anovamodel::M,
::Type{T},
dof::NTuple{N, Int},
deviance::NTuple{N, Float64},
teststat::NTuple{N, Float64},
pval::NTuple{N, Float64},
otherstat::NamedTuple) where {N, M <: AnovaModel{<: RegressionModel, N}, T <: GoodnessOfFit}
otherstat::NamedTuple
) where {N, M <: AnovaModel{<: RegressionModel, N}, T <: GoodnessOfFit}
"""
struct AnovaResult{M, T, N}
anovamodel::M
Expand All @@ -190,12 +207,15 @@ struct AnovaResult{M, T, N}
otherstat::NamedTuple
end

AnovaResult{T}(anovamodel::M,
dof::NTuple{N, Int},
deviance::NTuple{N, Float64},
teststat::NTuple{N, Float64},
pval::NTuple{N, Float64},
otherstat::NamedTuple) where {N, M <: AnovaModel{<: RegressionModel, N}, T <: GoodnessOfFit} =
AnovaResult(
anovamodel::M,
::Type{T},
dof::NTuple{N, Int},
deviance::NTuple{N, Float64},
teststat::NTuple{N, Float64},
pval::NTuple{N, Float64},
otherstat::NamedTuple
) where {N, M <: AnovaModel{<: RegressionModel, N}, T <: GoodnessOfFit} =
AnovaResult{M, T, N}(anovamodel, dof, deviance, teststat, pval, otherstat)

function_arg_error(fn, type) = ErrorException("Arguments are valid for $fn; however, no method match $fn(::$type)")
Expand Down
4 changes: 2 additions & 2 deletions src/fit.jl
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@ function ftest_nested(models::MultiAovModels{M, N}, df, dfr, dev, σ²) where {M
pval = map(zip(Δdf, dfr[2:end], fstat)) do (dof, dofr, fs)
fs > 0 ? ccdf(FDist(dof, dofr), fs) : NaN
end
AnovaResult{FTest}(models, df, dev, (NaN, fstat...), (NaN, pval...), NamedTuple())
AnovaResult(models, FTest, df, dev, (NaN, fstat...), (NaN, pval...), NamedTuple())
end

"""
Expand All @@ -45,7 +45,7 @@ function lrt_nested(models::MultiAovModels{M, N}, df, dev, σ²) where {M <: Reg
pval = map(zip(Δdf, lrstat)) do (dof, lr)
lr > 0 ? ccdf(Chisq(dof), lr) : NaN
end
AnovaResult{LRT}(models, df, dev, (NaN, lrstat...), (NaN, pval...), NamedTuple())
AnovaResult(models, LRT, df, dev, (NaN, lrstat...), (NaN, pval...), NamedTuple())
end

# Calculate dof from assign
Expand Down
6 changes: 3 additions & 3 deletions src/interface.jl
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,7 @@ Degrees of freedom of residuals.
By default, it applies `dof_residual` to models in `aov.anovamodel`.
"""
dof_residual(aov::AnovaResult{M, T, N}) where {M, T, N} = ntuple(x -> dof_residual(aov.anovamodel.model), N)
dof_residual(aov::AnovaResult{<: MultiAovModels}) = dof_residual.(aov.anovamodel.model)
dof_residual(aov::AnovaResult{<: MultiAovModels}) = map(dof_residual, aov.anovamodel.model)

"""
predictors(model::RegressionModel)
Expand All @@ -72,9 +72,9 @@ Return a table with coefficients and related statistics of ANOVA.

When displaying `aov` in repl, `rownames` will be `prednames(aov)` for [`FullModel`](@ref) and `string.(1:N)` for [`MultiAovModels`](@ref).

For `MultiAovModels`, there are two default methods for `FTest` and `LRT`; one can also define new methods dispatching on `::NestedModels{M}` or `::NestedModels{M}` where `M` is a model type.
For `MultiAovModels`, there are two default methods for `FTest` and `LRT`; one can also define new methods dispatching on `::AnovaResult{NestedModels{M}}` or `::AnovaResult{MixedAovModels{M}}` where `M` is a model type.

For a `FullModel`, no default api is implemented.
For `FullModel`, no default api is implemented.

The returned `AnovaTable` object implements the [`Tables.jl`](https://github.com/JuliaData/Tables.jl/) interface, and can be
converted e.g. to a DataFrame via `using DataFrames; DataFrame(anovatable(aov))`.
Expand Down
7 changes: 1 addition & 6 deletions src/io.jl
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,6 @@ function show(io::IO, anovamodel::FullModel)
println(io)
println(io, "Coefficients:")
show(io, coeftable(anovamodel.model))
println(io, "\n")
end

function show(io::IO, anovamodel::NestedModels{M, N}) where {M, N}
Expand All @@ -60,7 +59,6 @@ function show(io::IO, anovamodel::NestedModels{M, N}) where {M, N}
println(io)
N > 2 && print(io, " .\n" ^ 3)
show(io, coeftable(last(anovamodel.model)))
println(io, "\n")
end

function show(io::IO, anovamodel::MixedAovModels{M, N}) where {M, N}
Expand All @@ -76,7 +74,6 @@ function show(io::IO, anovamodel::MixedAovModels{M, N}) where {M, N}
println(io)
N > 2 && print(io, " .\n" ^ 3)
show(io, coeftable(last(anovamodel.model)))
println(io, "\n")
end

# Show function that delegates to anovatable
Expand All @@ -90,7 +87,6 @@ function show(io::IO, aov::AnovaResult{<: FullModel, T}) where {T <: GoodnessOfF
println(io)
println(io, "Table:")
show(io, at)
println(io, "\n")
end

function show(io::IO, aov::AnovaResult{<: MultiAovModels, T}) where {T <: GoodnessOfFit}
Expand All @@ -105,7 +101,6 @@ function show(io::IO, aov::AnovaResult{<: MultiAovModels, T}) where {T <: Goodne
println(io)
println(io, "Table:")
show(io, at)
println(io, "\n")
end
# ============================================================================================================================
# AnovaTable, mostly from CoefTable
Expand Down Expand Up @@ -134,7 +129,7 @@ mutable struct AnovaTable
function AnovaTable(cols::Vector, colnms::Vector, rownms::Vector,
pvalcol::Int = 0, teststatcol::Int = 0)
nc = length(cols)
nrs = map(length, cols)
nrs = map(length, cols)::Vector{Int}
nr = nrs[1]
length(colnms) in [0, nc] || throw(ArgumentError("colnms should have length 0 or $nc"))
length(rownms) in [0, nr] || throw(ArgumentError("rownms should have length 0 or $nr"))
Expand Down
30 changes: 19 additions & 11 deletions test/runtests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -119,12 +119,17 @@ anovatable(::AnovaResult{<: FullModel{StatsModels.TableRegressionModel{Int64, Ma
@test @test_error ArgumentError FullModel(model4, 3, true, true)
@test FullModel(model5, 3, false, true).pred_id == ntuple(identity, 4)[2:4]
@test FullModel(model6, 3, false, true).pred_id == ntuple(identity, 4)
@test @test_error ArgumentError NestedModels{Int}(1.5, 2.5, 3)
@test @test_error ArgumentError NestedModels{Int}((1.5, 2.5, 3))
@test @test_error !(MixedAovModels{Number}(1, 2.5, 2//3))
@test @test_error ArgumentError MixedAovModels{Int}((1, 2.5, 2//3))
@test @test_error ArgumentError NestedModels(1.5, 2.5, 3)
@test @test_error ArgumentError NestedModels((1.5, 2.5, 3))
@test @test_error !(MixedAovModels(1, 2.5, 2//3))
@test @test_error ArgumentError MixedAovModels((1, 2, 1))
@test @test_error ArgumentError MixedAovModels(1, 2, 1)
@test MultiAovModels(1, 2, 1) isa NestedModels{Int, 3}
@test MultiAovModels((1, 2, 1)) isa NestedModels{Int, 3}
@test MultiAovModels(1, 2.5, 1) isa MixedAovModels{Union{Int, Float64}, 3}
@test MultiAovModels((1, 2.5, 1)) isa MixedAovModels{Union{Int, Float64}, 3}
end
global ft = AnovaResult{FTest}(NestedModels{StatsModels.TableRegressionModel}(
global ft = AnovaResult(NestedModels(
ntuple(7) do i
StatsModels.TableRegressionModel(
1,
Expand All @@ -134,18 +139,20 @@ anovatable(::AnovaResult{<: FullModel{StatsModels.TableRegressionModel{Int64, Ma
mm)
end
),
FTest,
ntuple(identity, 7),
ntuple(one ∘ float, 7),
ntuple(one ∘ float, 7),
ntuple(zero ∘ float, 7),
NamedTuple())
global lrt = AnovaResult{LRT}(FullModel(model1, ntuple(identity, 8)[2:8], 3),
global lrt = AnovaResult(FullModel(model1, ntuple(identity, 8)[2:8], 3),
LRT,
ntuple(identity, 7),
ntuple(one ∘ float, 7),
ntuple(one ∘ float, 7),
ntuple(zero ∘ float, 7),
NamedTuple())
global lrt2 = AnovaResult{LRT}(NestedModels{StatsModels.TableRegressionModel}(
global lrt2 = AnovaResult(NestedModels(
ntuple(3) do i
StatsModels.TableRegressionModel(
1,
Expand All @@ -155,6 +162,7 @@ anovatable(::AnovaResult{<: FullModel{StatsModels.TableRegressionModel{Int64, Ma
mm)
end
),
LRT,
ntuple(identity, 3),
ntuple(one ∘ float, 3),
ntuple(one ∘ float, 3),
Expand Down Expand Up @@ -182,8 +190,8 @@ anovatable(::AnovaResult{<: FullModel{StatsModels.TableRegressionModel{Int64, Ma
@test AnovaBase._diffn((1, 2, 3)) == (-1, -1)
@test canonicalgoodnessoffit(Gamma()) == FTest
@test canonicalgoodnessoffit(Binomial()) == LRT
@test AnovaBase.lrt_nested(NestedModels{StatsModels.TableRegressionModel}(model1, model1), (1,2), (1.5, 1.5), 0.1).teststat[2] == 0.0
@test AnovaBase.ftest_nested(NestedModels{StatsModels.TableRegressionModel}((model1, model1)), (1,2), (10, 10), (1.5, 1.5), 0.1).teststat[2] == 0.0
@test AnovaBase.lrt_nested(NestedModels(model1, model1), (1,2), (1.5, 1.5), 0.1).teststat[2] == 0.0
@test AnovaBase.ftest_nested(NestedModels((model1, model1)), (1,2), (10, 10), (1.5, 1.5), 0.1).teststat[2] == 0.0
@test dof_asgn([1, 2, 2, 2, 3]) == [1, 3, 1]
end
global f = FormulaTerm(conterm, MatrixTerm((InterceptTerm{true}(), caterm(), fterm, InteractionTerm((caterm(), fterm)))))
Expand Down Expand Up @@ -220,15 +228,15 @@ anovatable(::AnovaResult{<: FullModel{StatsModels.TableRegressionModel{Int64, Ma
NamedTuple())
)
@test @test_error ErrorException anovatable(AnovaResult{NestedModels{Int, 7}, TestTest, 7}(
NestedModels{Int}(ntuple(identity, 7)),
NestedModels(ntuple(identity, 7)),
ntuple(identity, 7),
ntuple(one ∘ float, 7),
ntuple(one ∘ float, 7),
ntuple(zero ∘ float, 7),
NamedTuple())
)
@test @test_error ErrorException anovatable(AnovaResult{MixedAovModels{Number, 7}, TestTest, 7}(
MixedAovModels{Number}(ntuple(identity, 7)),
MixedAovModels{Number, 7}(ntuple(identity, 7)),
ntuple(identity, 7),
ntuple(one ∘ float, 7),
ntuple(one ∘ float, 7),
Expand Down
Loading