pip install wah
You might want to manually install PyTorch for GPU computation.
lightning
matplotlib
numpy
pandas
pyperclip
PyYAML
selenium
tensorboard
timm
torch
torchaudio
torchmetrics
torchvision
webdriver_manager
attacks
- fgsm:
FGSM
,IFGSM
- fgsm:
datasets
- base:
ClassificationDataset
- cifar10:
CIFAR10
- cifar100:
CIFAR100
- dataloader
- __init__:
to_dataloader
- transforms:
CollateFunction
- __init__:
- imagenet:
ImageNet
- stl10:
STL10
- utils:
compute_mean_and_std
,DeNormalize
,Normalize
,portion_dataset
,tensor_to_dataset
- base:
models
- feature_extraction:
FeatureExtractor
- load:
add_preprocess
,load_model
,load_state_dict
- replace:
- __init__:
Replacer
- __init__:
- feature_extraction:
test
- accuracy:
AccuracyTest
- eval:
EvalTest
- hessian_max_eigval_spectrum:
HessianMaxEigValSpectrum
- loss:
LossTest
- pred:
PredTest
- tid:
TIDTest
- accuracy:
train
- plot:
proj_train_path_to_2d
,TrainPathPlot2D
- train:
Wrapper
,load_trainer
- plot:
_getattr
,
get_attrs
,
get_module_name
,
get_module_params
,
get_named_modules
,
get_valid_attr
basename
,
clean
,
dirname
,
exists
,
isdir
,
join
,
ls
,
mkdir
,
rmdir
,
rmfile
,
split
,
splitext
- dist:
DistPlot2D
- hist:
HistPlot2D
- image:
ImShow
- mat:
MatShow2D
- quiver:
QuiverPlot2D
,TrajPlot2D
- scatter:
GridPlot2D
,ScatterPlot2D
- geodesic:
optimize_geodesic
- grad:
compute_jacobian
,compute_hessian
- jacobian_sigvals:
JacobianSigVals
broadcasted_elementwise_mul
,
create_1d_traj
,
create_2d_grid
,
flatten_batch
,
repeat
,
stretch
- args:
ArgumentParser
- dictionary:
dict_to_df
,dict_to_tensor
,load_csv_to_dict
,load_yaml_to_dict
,save_dict_to_csv
- download:
disable_ssl_verification
,download_url
,md5_check
- logs:
disable_lightning_logging
- lst:
load_txt_to_list
,save_list_to_txt
,sort_str_list
- random:
seed
,unseed
- time:
time
- zip:
extract