Skip to content

Commit

Permalink
update documentation
Browse files Browse the repository at this point in the history
  • Loading branch information
yzhao062 committed Jul 30, 2019
1 parent 73d5c9d commit 3de4bed
Show file tree
Hide file tree
Showing 2 changed files with 22 additions and 24 deletions.
23 changes: 11 additions & 12 deletions README.rst
Original file line number Diff line number Diff line change
Expand Up @@ -96,22 +96,21 @@ combo is featured for:

**API Demo**\ :


.. code-block:: python
.. code-block:: python
from combo.models.stacking import Stacking
# base classifiers
classifiers = [DecisionTreeClassifier(), LogisticRegression(),
KNeighborsClassifier(), RandomForestClassifier(),
GradientBoostingClassifier()]
from combo.models.stacking import Stacking
# initialize a group of base classifiers
classifiers = [DecisionTreeClassifier(), LogisticRegression(),
KNeighborsClassifier(), RandomForestClassifier(),
GradientBoostingClassifier()]
clf = Stacking(base_estimators=classifiers) # initialize a Stacking model
clf.fit(X_train)
clf = Stacking(base_estimators=classifiers) # initialize a Stacking model
clf.fit(X_train, y_train) # fit the model
# predict on unseen data
y_test_labels = clf.predict(X_test) # label prediction
y_test_proba = clf.predict_proba(X_test) # probability prediction
# predict on unseen data
y_test_labels = clf.predict(X_test) # label prediction
y_test_proba = clf.predict_proba(X_test) # probability prediction
**Key Links and Resources**\ :
Expand Down
23 changes: 11 additions & 12 deletions docs/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -101,22 +101,21 @@ combo is featured for:

**API Demo**\ :

.. code-block:: python
.. code-block:: python
from combo.models.stacking import Stacking
# initialize a group of base classifiers
classifiers = [DecisionTreeClassifier(), LogisticRegression(),
KNeighborsClassifier(), RandomForestClassifier(),
GradientBoostingClassifier()]
from combo.models.classifier_stacking import Stacking
# base classifiers
classifiers = [DecisionTreeClassifier(), LogisticRegression(),
KNeighborsClassifier(), RandomForestClassifier(),
GradientBoostingClassifier()]
clf = Stacking(base_estimators=classifiers) # initialize a Stacking model
clf.fit(X_train, y_train) # fit the model
clf = Stacking(base_clfs=classifiers) # initialize a Stacking model
clf.fit(X_train)
# predict on unseen data
y_test_labels = clf.predict(X_test) # label prediction
y_test_proba = clf.predict_proba(X_test) # probability prediction
# predict on unseen data
y_test_labels = clf.predict(X_test) # label prediction
y_test_proba = clf.predict_proba(X_test) # probability prediction
**Key Links and Resources**\ :
Expand Down

0 comments on commit 3de4bed

Please sign in to comment.