Skip to content

对Plonk协议中多项式承诺部分的疑惑 #129

Discussion options

You must be logged in to vote

问题1.

由前一部分KZG10构造这节,我们知道分 $f_1(X)$ 的承诺为 $[C_1(X)]$, $f_2(X)$ 的承诺为 $[C_2(X)]$

对于 $f_1(X)$$f_2(X)$,Prover 要同时向 Verifier 证明 $f_1(\zeta)=y_1$$f_2(\zeta)=y_2$,那么有

$$ \begin{array}{l} f_1(X) = q_1(X)\cdot (X-\zeta) + y_1\\ f_2(X) = q_2(X) \cdot (X-\zeta) + y_2 \\ \end{array} $$

verifer 提供一个随机数 $\nu$, prover 将第二个式子乘以 $\nu$ 后和第一个式子相加,得到

$$ f_1(X) + \nu\cdot f_2(X) = (X-\zeta)\cdot (q_1(X) + \nu\cdot q_2(X)) + (y_1 + \nu\cdot y_2) $$

$(y_1 + \nu\cdot y_2)$ 移到等式的左边就得到

$$ f_1(X) + \nu\cdot f_2(X) - (y_1 + \nu\cdot y_2) = (X-\zeta)\cdot (q_1(X) + \nu\cdot q_2(X)) $$

参考商多项式的定义,可以得到将两个多项折叠之后的新商多项式:

$$ q(X) = q_1(X) + \nu\cdot q_2(X) $$

问题2.

这是利用了commitment 的加法同态性。 对于两个多项式

$$ a(X) = a_0 + a_1X + …

Replies: 2 comments

Comment options

You must be logged in to vote
0 replies
Answer selected by Demian101
Comment options

You must be logged in to vote
0 replies
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
2 participants