Skip to content

zdanovic/oracle_analytics

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🔍 Project Overview

Onchain Analytics is a comprehensive data analysis pipeline for blockchain transaction data. The project involves:

  • Writing and executing SQL queries for blockchain data extraction.
  • Preprocessing and cleaning raw data.
  • Feature engineering to generate additional insights.
  • Graph-based analysis to uncover relationships and clusters within transaction networks.

🖼️ Visualization

The project produces a graph-based visualization of transaction networks, identifying communities and key influencers.

Transaction Network Graph

Execute SQL Queries (Dune Analytics)

python queries/dune_data.sql
python queries/dune_eth.sql
python queries/dune_metrics.sql

Process & Analyze Data

python skript.py

Jupyter Notebook for Graph Analysis

jupyter notebook graph.ipynb

✨ Features

  • 📡 Blockchain Data Extraction – Uses Dune Analytics to fetch transaction data.
  • 🔄 Data Preprocessing – Cleans and formats raw blockchain transaction records.
  • 🎯 Feature Engineering – Adds new metrics for deeper analysis.
  • 🔗 Graph-Based Clustering – Uses NetworkX and Louvain clustering to detect transaction communities.
  • 📈 Graph Visualization – Creates a network representation of crypto transactions.
  • 🏆 Influencer Detection – Identifies key players using PageRank & centrality measures.

📂 Project Structure

├── output/                 # Processed data and visualizations
│   ├── graph.png           # Transaction network visualization
│   ├── processed_data.csv  # Processed dataset
├── queries/                # SQL queries for data extraction
│   ├── dune_data.sql       # SQL queries for Dune Analytics
│   ├── dune_eth.sql        # Ethereum-specific queries
│   ├── dune_metrics.sql    # Additional blockchain metrics
├── .gitignore              # Ignore unnecessary files
├── api.env                 # API keys and environment variables (ignored)
├── data.csv                # Raw transaction data
├── doc.pdf                 # Project documentation (ignored)
├── graph.ipynb             # Jupyter Notebook for graph analysis
├── metrics.csv             # Transaction metrics dataset
├── skript.py               # Main pipeline script
└── README.md               # Project documentation

🏆 Key Insights

  • Transaction Networks: Visualizing transaction flows helps identify patterns of behavior.
  • Cluster Detection: Louvain clustering reveals distinct transaction groups.
  • Whale Identification: PageRank highlights influential crypto addresses.

👤 Author

About

Onchain Analytics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published