To download the training data and the ICLR2022 benchmark for our S3 bucket, run download_data.sh
:
source download_data.sh
Command to run the training on independent-cropping
:
python train.py \
--save_dir logs/ \
--data_dirs ./datasets/training-data/independent-cropping \
--weights 100 \
--batch_size 16 \
--num_workers 2 \
--steps 200000 \
--grad_accum 2 \
--val_check_interval 10000 \
--pooling mean \
--loss mnrl \
--sampling mixed
Command to run the training on independent-cropping
and unarxiv-q2d
using in-batch mixing with 50-50 mix:
python train.py \
--save_dir logs/ \
--data_dirs ./datasets/training-data/independent-cropping ./datasets/training-data/unarxiv-q2d \
--weights 50 50 \
--batch_size 16 \
--num_workers 2 \
--steps 200000 \
--grad_accum 2 \
--val_check_interval 10000 \
--pooling mean \
--loss mnrl \
--sampling mixed
Command to run the training on independent-cropping
and unarxiv-q2d
using alternate batch:
python train.py \
--save_dir logs/ \
--data_dirs ./datasets/training-data/independent-cropping ./datasets/training-data/unarxiv-q2d \
--batch_size 16 \
--num_workers 2 \
--steps 200000 \
--grad_accum 2 \
--val_check_interval 10000 \
--pooling mean \
--loss mnrl \
--sampling alternate
To run the evaluation on SciDocs, you should download the data following the instructions here: https://github.com/allenai/scidocs . We need the 3 metadata files:
data/paper_metadata_mag_mesh.json
data/paper_metadata_view_cite_read.json
data/paper_metadata_recomm.json