A neural network library built on top of TensorFlow for quickly building deep learning models.
Switch branches/tags
Nothing to show
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Failed to load latest commit information.
docs
examples
nn
.gitignore
LICENSE
README.md
release
setup.py

README.md

A neural network library built on top of TensorFlow for quickly building deep learning models.

Installation

pip install nn

Example

import nn

# Create the model
@nn.model
def model(inputs):
    # Define the network architecture (layers, number of units, activations)
    hidden = nn.Dense(units=64, activation='relu')(inputs)
    outputs = nn.Dense(units=10)(hidden)

    # Configure the learning process (loss, optimizer, evaluation metrics)
    return dict(outputs=outputs,
                loss='softmax_cross_entropy',
                optimizer=('GradientDescent', 0.001),
                metrics=['accuracy'])

# Train the model using training data:
model.train(x_train, y_train, epochs=30, batch_size=128)

# Evaluate the model performance on test or validation data:
loss_and_metrics = model.evaluate(x_test, y_test)

# Use the model to make predictions for new data:
predictions = model.predict(x)

Documentation

See documentation.

License

MIT