NVIDIA DeepStream SDK 6.0.1 YOLO models with Tracker Integration.
This repo focuses on the Tracking itself, for more information on the DeepStream YOLO plugin please refer to Marcos Luciano DeepStream Yolo Repo
There you can find benchmarks and extra tutorial and Info.
- Requirements
- Tested models
- Benchmarks
- dGPU installation
- Basic usage
- YOLOv5 usage
- YOLOR usage
- INT8 calibration
- Using your custom model
- Implement Trackers (like DeepSort)
- Ubuntu 18.04
- CUDA 11.4
- TensorRT 8.0 GA (8.0.1)
- cuDNN >= 8.2
- NVIDIA Driver >= 470.63.01
- NVIDIA DeepStream SDK 6.0.1 (6.0)
- DeepStream-Yolo
nms-iou-threshold = 0.6
pre-cluster-threshold = 0.001 (mAP eval) / 0.25 (FPS measurement)
batch-size = 1
valid = val2017 (COCO) - 1000 random images for INT8 calibration
sample = 1920x1080 video
NOTE: Used maintain-aspect-ratio=1 in config_infer file for YOLOv4 (with letter_box=1), YOLOv5 and YOLOR models.
To install the DeepStream on dGPU (x86 platform), without docker, we need to do some steps to prepare the computer.
Open
If you are using a laptop with newer Intel/AMD processors, please update the kernel to newer version.
wget https://kernel.ubuntu.com/~kernel-ppa/mainline/v5.11/amd64/linux-headers-5.11.0-051100_5.11.0-051100.202102142330_all.deb
wget https://kernel.ubuntu.com/~kernel-ppa/mainline/v5.11/amd64/linux-headers-5.11.0-051100-generic_5.11.0-051100.202102142330_amd64.deb
wget https://kernel.ubuntu.com/~kernel-ppa/mainline/v5.11/amd64/linux-image-unsigned-5.11.0-051100-generic_5.11.0-051100.202102142330_amd64.deb
wget https://kernel.ubuntu.com/~kernel-ppa/mainline/v5.11/amd64/linux-modules-5.11.0-051100-generic_5.11.0-051100.202102142330_amd64.deb
sudo dpkg -i *.deb
sudo reboot
sudo apt-get install gcc make git libtool autoconf autogen pkg-config cmake
sudo apt-get install python3 python3-dev python3-pip
sudo apt install libssl1.0.0 libgstreamer1.0-0 gstreamer1.0-tools gstreamer1.0-plugins-good gstreamer1.0-plugins-bad gstreamer1.0-plugins-ugly gstreamer1.0-libav libgstrtspserver-1.0-0 libjansson4
sudo apt-get install libglvnd-dev
sudo apt-get install linux-headers-$(uname -r)
NOTE: Install DKMS only if you are using the default Ubuntu kernel
sudo apt-get install dkms
NOTE: Purge all NVIDIA driver, CUDA, etc.
sudo apt-get remove --purge '*nvidia*'
sudo apt-get remove --purge '*cuda*'
sudo apt-get remove --purge '*cudnn*'
sudo apt-get remove --purge '*tensorrt*'
sudo apt autoremove --purge && sudo apt autoclean && sudo apt clean
sudo nano /etc/modprobe.d/blacklist-nouveau.conf
- Add
blacklist nouveau
options nouveau modeset=0
- Run
sudo update-initramfs -u
sudo reboot
- TITAN, GeForce RTX / GTX series and RTX / Quadro series
wget https://us.download.nvidia.com/XFree86/Linux-x86_64/470.103.01/NVIDIA-Linux-x86_64-470.103.01.run
sudo sh NVIDIA-Linux-x86_64-470.103.01.run
- Data center / Tesla series
wget https://us.download.nvidia.com/tesla/470.103.01/NVIDIA-Linux-x86_64-470.103.01.run
sudo sh NVIDIA-Linux-x86_64-470.103.01.run
NOTE: Only if you are using default Ubuntu kernel, enable the DKMS during the installation.
wget https://developer.download.nvidia.com/compute/cuda/11.4.3/local_installers/cuda_11.4.3_470.82.01_linux.run
sudo sh cuda_11.4.3_470.82.01_linux.run
- Export environment variables
nano ~/.bashrc
- Add
export PATH=/usr/local/cuda-11.4/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-11.4/lib64\${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
- Run
source ~/.bashrc
sudo ldconfig
NOTE: If you are using a laptop with NVIDIA Optimius, run
sudo apt-get install nvidia-prime
sudo prime-select nvidia
7. Download from NVIDIA website and install the TensorRT 8.0 GA (8.0.1)
echo "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64 /" | sudo tee /etc/apt/sources.list.d/cuda-repo.list
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub
sudo apt-key add 7fa2af80.pub
sudo apt-get update
sudo dpkg -i nv-tensorrt-repo-ubuntu1804-cuda11.3-trt8.0.1.6-ga-20210626_1-1_amd64.deb
sudo apt-key add /var/nv-tensorrt-repo-ubuntu1804-cuda11.3-trt8.0.1.6-ga-20210626/7fa2af80.pub
sudo apt-get update
sudo apt-get install libnvinfer8=8.0.1-1+cuda11.3 libnvinfer-plugin8=8.0.1-1+cuda11.3 libnvparsers8=8.0.1-1+cuda11.3 libnvonnxparsers8=8.0.1-1+cuda11.3 libnvinfer-bin=8.0.1-1+cuda11.3 libnvinfer-dev=8.0.1-1+cuda11.3 libnvinfer-plugin-dev=8.0.1-1+cuda11.3 libnvparsers-dev=8.0.1-1+cuda11.3 libnvonnxparsers-dev=8.0.1-1+cuda11.3 libnvinfer-samples=8.0.1-1+cuda11.3 libnvinfer-doc=8.0.1-1+cuda11.3
8. Download from NVIDIA website and install the DeepStream SDK 6.0.1 (6.0)
sudo apt-get install ./deepstream-6.0_6.0.1-1_amd64.deb
rm ${HOME}/.cache/gstreamer-1.0/registry.x86_64.bin
sudo ln -snf /usr/local/cuda-11.4 /usr/local/cuda
sudo reboot
git clone https://github.com/marcoslucianops/DeepStream-Yolo.git
cd DeepStream-Yolo
- x86 platform
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
- Jetson platform
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
[property]
...
# 0=RGB, 1=BGR, 2=GRAYSCALE
model-color-format=0
# YOLO cfg
custom-network-config=yolov4.cfg
# YOLO weights
model-file=yolov4.weights
# Generated TensorRT model (will be created if it doesn't exist)
model-engine-file=model_b1_gpu0_fp32.engine
# Model labels file
labelfile-path=labels.txt
# Batch size
batch-size=1
# 0=FP32, 1=INT8, 2=FP16 mode
network-mode=0
# Number of classes in label file
num-detected-classes=80
...
[class-attrs-all]
# IOU threshold
nms-iou-threshold=0.45
# Score threshold
pre-cluster-threshold=0.25
deepstream-app -c deepstream_app_config.txt
NOTE: If you want to use YOLOv2 or YOLOv2-Tiny models, change the deepstream_app_config.txt file before run it
...
[primary-gie]
enable=1
gpu-id=0
gie-unique-id=1
nvbuf-memory-type=0
config-file=config_infer_primary_yoloV2.txt
NOTE: Make sure to change the YOLOv5 repo version to your model version before conversion.
1. Copy gen_wts_yoloV5.py from DeepStream-Yolo/utils to ultralytics/yolov5 folder
3. Download pt file from ultralytics/yolov5 website (example for YOLOv5n 6.1)
wget https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5n.pt
python3 gen_wts_yoloV5.py -w yolov5n.pt
- x86 platform
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
- Jetson platform
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
[property]
...
# 0=RGB, 1=BGR, 2=GRAYSCALE
model-color-format=0
# CFG
custom-network-config=yolov5n.cfg
# WTS
model-file=yolov5n.wts
# Generated TensorRT model (will be created if it doesn't exist)
model-engine-file=model_b1_gpu0_fp32.engine
# Model labels file
labelfile-path=labels.txt
# Batch size
batch-size=1
# 0=FP32, 1=INT8, 2=FP16 mode
network-mode=0
# Number of classes in label file
num-detected-classes=80
...
[class-attrs-all]
# IOU threshold
nms-iou-threshold=0.45
# Score threshold
pre-cluster-threshold=0.25
...
[primary-gie]
enable=1
gpu-id=0
gie-unique-id=1
nvbuf-memory-type=0
config-file=config_infer_primary_yoloV5.txt
deepstream-app -c deepstream_app_config.txt
NOTE: For YOLOv5 P6 or custom models, check the gen_wts_yoloV5.py args and use them according to your model
- Input weights (.pt) file path (required)
-w or --weights
- Input cfg (.yaml) file path
-c or --yaml
- Model width (default = 640 / 1280 [P6])
-mw or --width
- Model height (default = 640 / 1280 [P6])
-mh or --height
- Model channels (default = 3)
-mc or --channels
- P6 model
--p6
1. Copy gen_wts_yolor.py from DeepStream-Yolo/utils to yolor folder
3. Download pt file from yolor website
python3 gen_wts_yolor.py -w yolor_csp.pt -c cfg/yolor_csp.cfg
- x86 platform
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
- Jetson platform
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
[property]
...
# 0=RGB, 1=BGR, 2=GRAYSCALE
model-color-format=0
# CFG
custom-network-config=yolor_csp.cfg
# WTS
model-file=yolor_csp.wts
# Generated TensorRT model (will be created if it doesn't exist)
model-engine-file=model_b1_gpu0_fp32.engine
# Model labels file
labelfile-path=labels.txt
# Batch size
batch-size=1
# 0=FP32, 1=INT8, 2=FP16 mode
network-mode=0
# Number of classes in label file
num-detected-classes=80
...
[class-attrs-all]
# IOU threshold
nms-iou-threshold=0.5
# Score threshold
pre-cluster-threshold=0.25
...
[primary-gie]
enable=1
gpu-id=0
gie-unique-id=1
nvbuf-memory-type=0
config-file=config_infer_primary_yolor.txt
deepstream-app -c deepstream_app_config.txt
sudo apt-get install libopencv-dev
- x86 platform
cd DeepStream-Yolo
CUDA_VER=11.4 OPENCV=1 make -C nvdsinfer_custom_impl_Yolo
- Jetson platform
cd DeepStream-Yolo
CUDA_VER=10.2 OPENCV=1 make -C nvdsinfer_custom_impl_Yolo
3. For COCO dataset, download the val2017, extract, and move to DeepStream-Yolo folder
mkdir calibration
for jpg in $(ls -1 val2017/*.jpg | sort -R | head -1000); do \
cp ${jpg} calibration/; \
done
realpath calibration/*jpg > calibration.txt
export INT8_CALIB_IMG_PATH=calibration.txt
export INT8_CALIB_BATCH_SIZE=1
...
model-engine-file=model_b1_gpu0_fp32.engine
#int8-calib-file=calib.table
...
network-mode=0
...
- To
...
model-engine-file=model_b1_gpu0_int8.engine
int8-calib-file=calib.table
...
network-mode=1
...
deepstream-app -c deepstream_app_config.txt
NOTE: NVIDIA recommends at least 500 images to get a good accuracy. In this example I used 1000 images to get better accuracy (more images = more accuracy). Higher INT8_CALIB_BATCH_SIZE values will increase the accuracy and calibration speed. Set it according to you GPU memory. This process can take a long time.
The Deepstream allows you easy acess to different trackers with different settings. Among them are:
- IoU Tracker (Very simple one, should only be used as a Base case to compare)
- NvDCF (Nvidia's Tracker)
- DeepSORT (Alpha)
You can find more information about each specific tracker and it's settings on the NVIDIA website.
For a quickstart you can run the following configs (edit first to choose which yolo you want).
deepstream-app -c deepstream_app_config-tracker.txt
deepstream-app -c deepstream_app_config-tracker-webcam.txt
If you want to customize which tracker you are using you have to edit the following lines in the deepstream config file.
You can also change the interval of the detector for faster inference. We don't need to detect every single frame if we have a tracker on, this will boost the FPS. We might loose some detections so consider the interval gap according to the use of your application.
[primary-gie]
enable=1
gpu-id=0
interval=2
gie-unique-id=1
nvbuf-memory-type=0
config-file=config_infer_primary_yolor.txt
More of these config instructions can be found on Using your custom model
[tracker]
enable=1
tracker-width=640
tracker-height=384
gpu-id=0
ll-lib-file=/opt/nvidia/deepstream/deepstream/lib/libnvds_nvmultiobjecttracker.so
#ll-config-file=/opt/nvidia/deepstream/deepstream/samples/configs/deepstream-app/config_tracker_DeepSORT.yml
#enable-past-frame=1
enable-batch-process=1
The NVIDIA tracker plugin unites all trackers under the same common library called nvmultiobjecttracker
Each different tracker can be choosen with a config-file
For example to use the IoU Tracker you would use:
ll-config-file=/opt/nvidia/deepstream/deepstream/samples/configs/deepstream-app/config_tracker_IoU.yml
To use NvDCF with max performance
ll-config-file=/opt/nvidia/deepstream/deepstream/samples/configs/deepstream-app/config_tracker_NvDCF_max_perf.yml
To use DeepSORT:
ll-config-file=/opt/nvidia/deepstream/deepstream/samples/configs/deepstream-app/config_tracker_DeepSORT.yml
Note to make DeepStream work you first need to compile the engine according to the instructions in: DeepSORT DeepStream Tutorial
You can try different trackers outisde of DeepStream default library such as Byte. Instructions can be found here. ByteTrack DeepStream
To use the USB-Cam (or any type of cam) in DeepStream you must eddit the [source] on the deepstream-config.
More of these config instructions on different type of sources can be found on Using your custom model
It's important that the camera fps / width / height match the settings of your camera.
#Camera Source
[source0]
enable=1
# Type – 1=CameraV4L2 2=URI 3=MultiURI
type=1
camera-width=640
camera-height=480
camera-fps-n=30
camera-fps-d=1
camera-v4l2-dev-node=1
num-sources=1
You can get metadata from deepstream in Python and C++. For C++, you need edit deepstream-app or deepstream-test code. For Python your need install and edit deepstream_python_apps.
You need manipulate NvDsObjectMeta (Python/C++), NvDsFrameMeta (Python/C++) and NvOSD_RectParams (Python/C++) to get label, position, etc. of bboxes.
In C++ deepstream-app application, your code need be in analytics_done_buf_prob function. In C++/Python deepstream-test application, your code need be in osd_sink_pad_buffer_probe/tiler_src_pad_buffer_probe function.
To extract meta-data on the kitti format from the trackers and detectors you can add the following likes to your deepstream-app config under the [application] part.
Make sure to choose the directory you wish to save the metadata accordingly (create the directory previously).
[application]
enable-perf-measurement=1
perf-measurement-interval-sec=5
kitti-track-output-dir=/home/Tracker_Info
gie-kitti-output-dir=/home/Detector_Info
To save the video output of your DeepStream app you must add another [sink] to your config file as such.
[sink1]
enable=1
type=3
container=1
sync=0
codec=1
bitrate=2000000
output-file=out.mp4
Most of this code is from MarcosLuciano's Repo. Please refer to it if for further information . As for my part of the config files you can do whatever you want with them. Please check Marcos other projects and inference videos :) : https://www.youtube.com/MarcosLucianoTV