@@ -714,8 +714,10 @@ def _triangle_scores(
714714 * (a + 1 )
715715 )
716716 # normalization of 2nd component: B = P*N_delta/sum(f), where f is the component formula
717- B0 = P * (self .n_img * (self .n_img - 1 ) * (self .n_img - 2 ) / 2 ) / np .sum (
718- ((1 - hist_x ) ** b ) * np .exp (- b / (1 - x0 ) * (1 - hist_x ))
717+ B0 = (
718+ P
719+ * (self .n_img * (self .n_img - 1 ) * (self .n_img - 2 ) / 2 )
720+ / np .sum (((1 - hist_x ) ** b ) * np .exp (- b / (1 - x0 ) * (1 - hist_x )))
719721 )
720722 start_values = np .array ([B0 , P , b , x0 ], dtype = np .float64 )
721723 lower_bounds = np .array ([0 , Pmin ** 3 , 2 , 0 ], dtype = np .float64 )
@@ -742,6 +744,8 @@ def fun(x, B, P, b, x0, A=A, a=a):
742744 P = P ** (1 / 3 )
743745 sigma = (1 - x0 ) / peak2sigma
744746
747+ logger .info (f"Estimated CL Errors P,STD:\t { 100 * P } %\t { sigma } " )
748+
745749 # Initialize probability computations
746750 # Local histograms analysis
747751 A = a + 1 # distribution 1st component normalization factor
@@ -768,6 +772,10 @@ def fun(x, B, P, b, x0, A=A, a=a):
768772 )
769773 Pij = np .nan_to_num (Pij )
770774
775+ logger .info (
776+ f"Common lines probabilities to be indicative Pij={ 100 * np .mean (Pij )} %"
777+ )
778+
771779 return P , sigma , Pij , scores_hist
772780
773781 ###########################################
0 commit comments