-
Notifications
You must be signed in to change notification settings - Fork 57
Bm/version 1.4.0 #137
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Bm/version 1.4.0 #137
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Transformer-based models can now be reused and expanded quickly and easily
…/DeepTrack-2.0 into dt/eth-cs-examples
…/DeepTrack-2.0 into dt/eth-cs-examples
…/DeepTrack-2.0 into dt/eth-cs-examples
…eepTrack-2.0 into bm/version-1.4.0
giovannivolpe
added a commit
that referenced
this pull request
Oct 4, 2022
* chore: autopublish 2022-07-26T13:54:44Z * Remove create-badges job * Delete test.py * Add multi-head masked attention * Update multi-head gated attention to match parent layer * Update documentation * Test multi-head masked attention * allow gated attention layers to use bias * test bias in gated attention layers * set return_attention_weights to False to avoid multi-outputs Use MultiHeadSelfAttention and MultiHeadGatedSelfAttention if want to return the attention weights * reformat gnns/layers.py This commit adds new message-passing graph layers (MPN) and graph convolutional layers to dt, including vanilla MPN, GRUMPN, Masked-attention FGNN, and GraphTransformer. * Update layers.py * Update test_layers.py * Update models.py * Update test_models.py * Update test_models.py * Fix indexing problems related to tf.gather * Allow multi-inputs in ContinuousGenerator * Fix bad conversion to integer * version bump * Fix phase correction at focus and offset calculation * Fix phase correction in propagation * Fix mie phase out of foucs * Fix mie phase out of foucs * Update README.md * Bm/version 1.4.0 (#137) * Update layers.py * Update convolutional.py Transformer-based models can now be reused and expanded quickly and easily * Update documentation * Update Transformer-based models * Delete classifying_MNIST_vit_tutorial.ipynb * Create classifying_MNIST_vit_tutorial.ipynb * Update datasets.py * Allows kwargs as inputs in single_layer_call * Update embeddings.py * masked transformers * reformat transformer models * Create trajectory_analysis_tutorial.ipynb * Add Variational autoencoders * Add variational autoencoders * Update vae.py * Create MNIST_VAE_tutorial.ipynb * Update MNIST_VAE_tutorial.ipynb * Create folder for course examples * Update README.md * Update README.md * Update examples * Update README.md * Update README.md * Update MNIST VAE examples * Added MLP regression example * Update README.md * Create image_segmentation_Unet.ipynb * Update README.md * Documented and tested cell_counting_tutorial.ipynb * improve dnn example * Shift variant mie * Position mie scatterer correctly * implement set z * implement mnist v1 * implement z dependence * remove logging * Implement flattening methods * Implement pooling and resizing * Implement TensorflowDataset * Finalize MNIST * Implement Malaria classification * alpha0 release * fix batchsize in fit * implement dataset.take * Implement datasets * fix phase in mie * Fix mie positioning and focusing * Commit to new branch * add tensorflow datasets dependence * remove test Co-authored-by: Jesús Pineda <jesus.pineda@physics.gu.se> Co-authored-by: Jesús Pineda <36273229+JesusPinedaC@users.noreply.github.com> Co-authored-by: Benjamin Midtvedt <benmid@student.chalmers.se> Co-authored-by: Ccx55 <ccx555@gmail.com> Co-authored-by: BenjaminMidtvedt <41636530+BenjaminMidtvedt@users.noreply.github.com> Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com> Co-authored-by: Jesús Pineda <jesus.pineda@physics.gu.se> Co-authored-by: Benjamin Midtvedt <benmid@student.chalmers.se> Co-authored-by: Jesús Pineda <36273229+JesusPinedaC@users.noreply.github.com> Co-authored-by: Ccx55 <ccx555@gmail.com>
giovannivolpe
added a commit
that referenced
this pull request
Nov 1, 2022
* chore: autopublish 2022-07-26T13:54:44Z * Remove create-badges job * Delete test.py * Add multi-head masked attention * Update multi-head gated attention to match parent layer * Update documentation * Test multi-head masked attention * allow gated attention layers to use bias * test bias in gated attention layers * set return_attention_weights to False to avoid multi-outputs Use MultiHeadSelfAttention and MultiHeadGatedSelfAttention if want to return the attention weights * reformat gnns/layers.py This commit adds new message-passing graph layers (MPN) and graph convolutional layers to dt, including vanilla MPN, GRUMPN, Masked-attention FGNN, and GraphTransformer. * Update layers.py * Update test_layers.py * Update models.py * Update test_models.py * Update test_models.py * Fix indexing problems related to tf.gather * Allow multi-inputs in ContinuousGenerator * Fix bad conversion to integer * version bump * Fix phase correction at focus and offset calculation * Fix phase correction in propagation * Fix mie phase out of foucs * Fix mie phase out of foucs * Update README.md * Bm/version 1.4.0 (#137) * Update layers.py * Update convolutional.py Transformer-based models can now be reused and expanded quickly and easily * Update documentation * Update Transformer-based models * Delete classifying_MNIST_vit_tutorial.ipynb * Create classifying_MNIST_vit_tutorial.ipynb * Update datasets.py * Allows kwargs as inputs in single_layer_call * Update embeddings.py * masked transformers * reformat transformer models * Create trajectory_analysis_tutorial.ipynb * Add Variational autoencoders * Add variational autoencoders * Update vae.py * Create MNIST_VAE_tutorial.ipynb * Update MNIST_VAE_tutorial.ipynb * Create folder for course examples * Update README.md * Update README.md * Update examples * Update README.md * Update README.md * Update MNIST VAE examples * Added MLP regression example * Update README.md * Create image_segmentation_Unet.ipynb * Update README.md * Documented and tested cell_counting_tutorial.ipynb * improve dnn example * Shift variant mie * Position mie scatterer correctly * implement set z * implement mnist v1 * implement z dependence * remove logging * Implement flattening methods * Implement pooling and resizing * Implement TensorflowDataset * Finalize MNIST * Implement Malaria classification * alpha0 release * fix batchsize in fit * implement dataset.take * Implement datasets * fix phase in mie * Fix mie positioning and focusing * Commit to new branch * add tensorflow datasets dependence * remove test Co-authored-by: Jesús Pineda <jesus.pineda@physics.gu.se> Co-authored-by: Jesús Pineda <36273229+JesusPinedaC@users.noreply.github.com> Co-authored-by: Benjamin Midtvedt <benmid@student.chalmers.se> Co-authored-by: Ccx55 <ccx555@gmail.com> * Add tensorflow datasets to the list of dependencies. * Read requirements.txt into setup.py * remove sphinx from build * remove create badges * Create CITATION.cff * Create .zenodo.json * Update transformer models * Update pint_definition.py * Update requirements.txt * create TimeDistributed CNN * small fixes to lodestar Co-authored-by: BenjaminMidtvedt <41636530+BenjaminMidtvedt@users.noreply.github.com> Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com> Co-authored-by: Jesús Pineda <jesus.pineda@physics.gu.se> Co-authored-by: Benjamin Midtvedt <benmid@student.chalmers.se> Co-authored-by: Jesús Pineda <36273229+JesusPinedaC@users.noreply.github.com> Co-authored-by: Ccx55 <ccx555@gmail.com>
giovannivolpe
added a commit
that referenced
this pull request
Nov 21, 2022
* chore: autopublish 2022-07-26T13:54:44Z * Remove create-badges job * Delete test.py * Add multi-head masked attention * Update multi-head gated attention to match parent layer * Update documentation * Test multi-head masked attention * allow gated attention layers to use bias * test bias in gated attention layers * set return_attention_weights to False to avoid multi-outputs Use MultiHeadSelfAttention and MultiHeadGatedSelfAttention if want to return the attention weights * reformat gnns/layers.py This commit adds new message-passing graph layers (MPN) and graph convolutional layers to dt, including vanilla MPN, GRUMPN, Masked-attention FGNN, and GraphTransformer. * Update layers.py * Update test_layers.py * Update models.py * Update test_models.py * Update test_models.py * Fix indexing problems related to tf.gather * Allow multi-inputs in ContinuousGenerator * Fix bad conversion to integer * version bump * Fix phase correction at focus and offset calculation * Fix phase correction in propagation * Fix mie phase out of foucs * Fix mie phase out of foucs * Update README.md * Bm/version 1.4.0 (#137) * Update layers.py * Update convolutional.py Transformer-based models can now be reused and expanded quickly and easily * Update documentation * Update Transformer-based models * Delete classifying_MNIST_vit_tutorial.ipynb * Create classifying_MNIST_vit_tutorial.ipynb * Update datasets.py * Allows kwargs as inputs in single_layer_call * Update embeddings.py * masked transformers * reformat transformer models * Create trajectory_analysis_tutorial.ipynb * Add Variational autoencoders * Add variational autoencoders * Update vae.py * Create MNIST_VAE_tutorial.ipynb * Update MNIST_VAE_tutorial.ipynb * Create folder for course examples * Update README.md * Update README.md * Update examples * Update README.md * Update README.md * Update MNIST VAE examples * Added MLP regression example * Update README.md * Create image_segmentation_Unet.ipynb * Update README.md * Documented and tested cell_counting_tutorial.ipynb * improve dnn example * Shift variant mie * Position mie scatterer correctly * implement set z * implement mnist v1 * implement z dependence * remove logging * Implement flattening methods * Implement pooling and resizing * Implement TensorflowDataset * Finalize MNIST * Implement Malaria classification * alpha0 release * fix batchsize in fit * implement dataset.take * Implement datasets * fix phase in mie * Fix mie positioning and focusing * Commit to new branch * add tensorflow datasets dependence * remove test Co-authored-by: Jesús Pineda <jesus.pineda@physics.gu.se> Co-authored-by: Jesús Pineda <36273229+JesusPinedaC@users.noreply.github.com> Co-authored-by: Benjamin Midtvedt <benmid@student.chalmers.se> Co-authored-by: Ccx55 <ccx555@gmail.com> * Add tensorflow datasets to the list of dependencies. * Read requirements.txt into setup.py * remove sphinx from build * remove create badges * Create CITATION.cff * Create .zenodo.json * Update transformer models * Update pint_definition.py * Update requirements.txt * create TimeDistributed CNN * small fixes to lodestar * remove direct getter of properties * Update scatterers.py Coherence length fix for MieScatterer * Update scatterers.py Added coherence length to the conversion table * mie phase fix Co-authored-by: BenjaminMidtvedt <41636530+BenjaminMidtvedt@users.noreply.github.com> Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com> Co-authored-by: Jesús Pineda <jesus.pineda@physics.gu.se> Co-authored-by: Benjamin Midtvedt <benmid@student.chalmers.se> Co-authored-by: Jesús Pineda <36273229+JesusPinedaC@users.noreply.github.com> Co-authored-by: Ccx55 <ccx555@gmail.com> Co-authored-by: Harshith Bachimanchi <62615092+HarshithBachimanchi@users.noreply.github.com>
giovannivolpe
added a commit
that referenced
this pull request
Dec 13, 2022
* chore: autopublish 2022-07-26T13:54:44Z * Remove create-badges job * Delete test.py * Add multi-head masked attention * Update multi-head gated attention to match parent layer * Update documentation * Test multi-head masked attention * allow gated attention layers to use bias * test bias in gated attention layers * set return_attention_weights to False to avoid multi-outputs Use MultiHeadSelfAttention and MultiHeadGatedSelfAttention if want to return the attention weights * reformat gnns/layers.py This commit adds new message-passing graph layers (MPN) and graph convolutional layers to dt, including vanilla MPN, GRUMPN, Masked-attention FGNN, and GraphTransformer. * Update layers.py * Update test_layers.py * Update models.py * Update test_models.py * Update test_models.py * Fix indexing problems related to tf.gather * Allow multi-inputs in ContinuousGenerator * Fix bad conversion to integer * version bump * Fix phase correction at focus and offset calculation * Fix phase correction in propagation * Fix mie phase out of foucs * Fix mie phase out of foucs * Update README.md * Bm/version 1.4.0 (#137) * Update layers.py * Update convolutional.py Transformer-based models can now be reused and expanded quickly and easily * Update documentation * Update Transformer-based models * Delete classifying_MNIST_vit_tutorial.ipynb * Create classifying_MNIST_vit_tutorial.ipynb * Update datasets.py * Allows kwargs as inputs in single_layer_call * Update embeddings.py * masked transformers * reformat transformer models * Create trajectory_analysis_tutorial.ipynb * Add Variational autoencoders * Add variational autoencoders * Update vae.py * Create MNIST_VAE_tutorial.ipynb * Update MNIST_VAE_tutorial.ipynb * Create folder for course examples * Update README.md * Update README.md * Update examples * Update README.md * Update README.md * Update MNIST VAE examples * Added MLP regression example * Update README.md * Create image_segmentation_Unet.ipynb * Update README.md * Documented and tested cell_counting_tutorial.ipynb * improve dnn example * Shift variant mie * Position mie scatterer correctly * implement set z * implement mnist v1 * implement z dependence * remove logging * Implement flattening methods * Implement pooling and resizing * Implement TensorflowDataset * Finalize MNIST * Implement Malaria classification * alpha0 release * fix batchsize in fit * implement dataset.take * Implement datasets * fix phase in mie * Fix mie positioning and focusing * Commit to new branch * add tensorflow datasets dependence * remove test Co-authored-by: Jesús Pineda <jesus.pineda@physics.gu.se> Co-authored-by: Jesús Pineda <36273229+JesusPinedaC@users.noreply.github.com> Co-authored-by: Benjamin Midtvedt <benmid@student.chalmers.se> Co-authored-by: Ccx55 <ccx555@gmail.com> * Add tensorflow datasets to the list of dependencies. * Read requirements.txt into setup.py * remove sphinx from build * remove create badges * Create CITATION.cff * Create .zenodo.json * Update transformer models * Update pint_definition.py * Update requirements.txt * create TimeDistributed CNN * small fixes to lodestar * Update layers.py * Update test_layers.py * remove direct getter of properties * Update scatterers.py Coherence length fix for MieScatterer * Update scatterers.py Added coherence length to the conversion table * mie phase fix * removed pydeepimagej from deps * Change loss input order of CGAN and PCGAN * Create dmdataset (dataset for graph-level regression tasks) * Update gnns/__init__.py * Add detection_linking_hela dataset * Update dmdataset.py * Create the regression_diffusion_landscape * Update scatterers.py CuPy fix for coherence length * Update test_scatterers.py Added a new method for testing MieSphere when coherence length parameter is provided. * Update augmentations.py * Update test_scatterers.py * Update test_scatterers.py * Create endothelial_vs dataset * Update layers.py * Update utils.py * Update docs link * Update README.md * version bump * version bump * Update README.md Co-authored-by: BenjaminMidtvedt <41636530+BenjaminMidtvedt@users.noreply.github.com> Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com> Co-authored-by: Jesús Pineda <jesus.pineda@physics.gu.se> Co-authored-by: Benjamin Midtvedt <benmid@student.chalmers.se> Co-authored-by: Jesús Pineda <36273229+JesusPinedaC@users.noreply.github.com> Co-authored-by: Ccx55 <ccx555@gmail.com> Co-authored-by: Harshith Bachimanchi <62615092+HarshithBachimanchi@users.noreply.github.com> Co-authored-by: gideon <gideon.jagenstedt@gmail.com> Co-authored-by: Benjamin Midtvedt <benjamin.midtvedt@physics.gu.se>
giovannivolpe
added a commit
that referenced
this pull request
Mar 7, 2023
* chore: autopublish 2022-07-26T13:54:44Z * Remove create-badges job * Delete test.py * Add multi-head masked attention * Update multi-head gated attention to match parent layer * Update documentation * Test multi-head masked attention * allow gated attention layers to use bias * test bias in gated attention layers * set return_attention_weights to False to avoid multi-outputs Use MultiHeadSelfAttention and MultiHeadGatedSelfAttention if want to return the attention weights * reformat gnns/layers.py This commit adds new message-passing graph layers (MPN) and graph convolutional layers to dt, including vanilla MPN, GRUMPN, Masked-attention FGNN, and GraphTransformer. * Update layers.py * Update test_layers.py * Update models.py * Update test_models.py * Update test_models.py * Fix indexing problems related to tf.gather * Allow multi-inputs in ContinuousGenerator * Fix bad conversion to integer * version bump * Fix phase correction at focus and offset calculation * Fix phase correction in propagation * Fix mie phase out of foucs * Fix mie phase out of foucs * Update README.md * Bm/version 1.4.0 (#137) * Update layers.py * Update convolutional.py Transformer-based models can now be reused and expanded quickly and easily * Update documentation * Update Transformer-based models * Delete classifying_MNIST_vit_tutorial.ipynb * Create classifying_MNIST_vit_tutorial.ipynb * Update datasets.py * Allows kwargs as inputs in single_layer_call * Update embeddings.py * masked transformers * reformat transformer models * Create trajectory_analysis_tutorial.ipynb * Add Variational autoencoders * Add variational autoencoders * Update vae.py * Create MNIST_VAE_tutorial.ipynb * Update MNIST_VAE_tutorial.ipynb * Create folder for course examples * Update README.md * Update README.md * Update examples * Update README.md * Update README.md * Update MNIST VAE examples * Added MLP regression example * Update README.md * Create image_segmentation_Unet.ipynb * Update README.md * Documented and tested cell_counting_tutorial.ipynb * improve dnn example * Shift variant mie * Position mie scatterer correctly * implement set z * implement mnist v1 * implement z dependence * remove logging * Implement flattening methods * Implement pooling and resizing * Implement TensorflowDataset * Finalize MNIST * Implement Malaria classification * alpha0 release * fix batchsize in fit * implement dataset.take * Implement datasets * fix phase in mie * Fix mie positioning and focusing * Commit to new branch * add tensorflow datasets dependence * remove test Co-authored-by: Jesús Pineda <jesus.pineda@physics.gu.se> Co-authored-by: Jesús Pineda <36273229+JesusPinedaC@users.noreply.github.com> Co-authored-by: Benjamin Midtvedt <benmid@student.chalmers.se> Co-authored-by: Ccx55 <ccx555@gmail.com> * Add tensorflow datasets to the list of dependencies. * Read requirements.txt into setup.py * remove sphinx from build * remove create badges * Create CITATION.cff * Create .zenodo.json * Update transformer models * Update pint_definition.py * Update requirements.txt * create TimeDistributed CNN * small fixes to lodestar * Update layers.py * Update test_layers.py * remove direct getter of properties * Update scatterers.py Coherence length fix for MieScatterer * Update scatterers.py Added coherence length to the conversion table * mie phase fix * removed pydeepimagej from deps * Change loss input order of CGAN and PCGAN * Create dmdataset (dataset for graph-level regression tasks) * Update gnns/__init__.py * Add detection_linking_hela dataset * Update dmdataset.py * Create the regression_diffusion_landscape * Update scatterers.py CuPy fix for coherence length * Update test_scatterers.py Added a new method for testing MieSphere when coherence length parameter is provided. * Update augmentations.py * Update test_scatterers.py * Update test_scatterers.py * Create endothelial_vs dataset * Update layers.py * Update utils.py * Update docs link * Update README.md * version bump * version bump * Update README.md * Update README.md * Update graphs.py * Update test_generators.py * Update generators.py * fix test * Update vae.py --------- Co-authored-by: BenjaminMidtvedt <41636530+BenjaminMidtvedt@users.noreply.github.com> Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com> Co-authored-by: Jesús Pineda <jesus.pineda@physics.gu.se> Co-authored-by: Benjamin Midtvedt <benmid@student.chalmers.se> Co-authored-by: Jesús Pineda <36273229+JesusPinedaC@users.noreply.github.com> Co-authored-by: Ccx55 <ccx555@gmail.com> Co-authored-by: Harshith Bachimanchi <62615092+HarshithBachimanchi@users.noreply.github.com> Co-authored-by: gideon <gideon.jagenstedt@gmail.com> Co-authored-by: Benjamin Midtvedt <benjamin.midtvedt@physics.gu.se>
giovannivolpe
added a commit
that referenced
this pull request
Apr 13, 2023
* chore: autopublish 2022-07-26T13:54:44Z * Remove create-badges job * Delete test.py * Add multi-head masked attention * Update multi-head gated attention to match parent layer * Update documentation * Test multi-head masked attention * allow gated attention layers to use bias * test bias in gated attention layers * set return_attention_weights to False to avoid multi-outputs Use MultiHeadSelfAttention and MultiHeadGatedSelfAttention if want to return the attention weights * reformat gnns/layers.py This commit adds new message-passing graph layers (MPN) and graph convolutional layers to dt, including vanilla MPN, GRUMPN, Masked-attention FGNN, and GraphTransformer. * Update layers.py * Update test_layers.py * Update models.py * Update test_models.py * Update test_models.py * Fix indexing problems related to tf.gather * Allow multi-inputs in ContinuousGenerator * Fix bad conversion to integer * version bump * Fix phase correction at focus and offset calculation * Fix phase correction in propagation * Fix mie phase out of foucs * Fix mie phase out of foucs * Update README.md * Bm/version 1.4.0 (#137) * Update layers.py * Update convolutional.py Transformer-based models can now be reused and expanded quickly and easily * Update documentation * Update Transformer-based models * Delete classifying_MNIST_vit_tutorial.ipynb * Create classifying_MNIST_vit_tutorial.ipynb * Update datasets.py * Allows kwargs as inputs in single_layer_call * Update embeddings.py * masked transformers * reformat transformer models * Create trajectory_analysis_tutorial.ipynb * Add Variational autoencoders * Add variational autoencoders * Update vae.py * Create MNIST_VAE_tutorial.ipynb * Update MNIST_VAE_tutorial.ipynb * Create folder for course examples * Update README.md * Update README.md * Update examples * Update README.md * Update README.md * Update MNIST VAE examples * Added MLP regression example * Update README.md * Create image_segmentation_Unet.ipynb * Update README.md * Documented and tested cell_counting_tutorial.ipynb * improve dnn example * Shift variant mie * Position mie scatterer correctly * implement set z * implement mnist v1 * implement z dependence * remove logging * Implement flattening methods * Implement pooling and resizing * Implement TensorflowDataset * Finalize MNIST * Implement Malaria classification * alpha0 release * fix batchsize in fit * implement dataset.take * Implement datasets * fix phase in mie * Fix mie positioning and focusing * Commit to new branch * add tensorflow datasets dependence * remove test Co-authored-by: Jesús Pineda <jesus.pineda@physics.gu.se> Co-authored-by: Jesús Pineda <36273229+JesusPinedaC@users.noreply.github.com> Co-authored-by: Benjamin Midtvedt <benmid@student.chalmers.se> Co-authored-by: Ccx55 <ccx555@gmail.com> * Add tensorflow datasets to the list of dependencies. * Read requirements.txt into setup.py * remove sphinx from build * remove create badges * Create CITATION.cff * Create .zenodo.json * Update transformer models * Update pint_definition.py * Update requirements.txt * create TimeDistributed CNN * small fixes to lodestar * Update layers.py * Update test_layers.py * remove direct getter of properties * Update scatterers.py Coherence length fix for MieScatterer * Update scatterers.py Added coherence length to the conversion table * mie phase fix * removed pydeepimagej from deps * Change loss input order of CGAN and PCGAN * Create dmdataset (dataset for graph-level regression tasks) * Update gnns/__init__.py * Add detection_linking_hela dataset * Update dmdataset.py * Create the regression_diffusion_landscape * Update scatterers.py CuPy fix for coherence length * Update test_scatterers.py Added a new method for testing MieSphere when coherence length parameter is provided. * Update augmentations.py * Update test_scatterers.py * Update test_scatterers.py * Create endothelial_vs dataset * Update layers.py * Update utils.py * Update docs link * Update README.md * version bump * version bump * Update README.md * Update README.md * Update graphs.py * Update test_generators.py * Update generators.py * fix test * Update vae.py * Bugfix in endothelial_vs dataset * Fix issue with repeated oneof-features (#169) * Update cell_migration_analysis.ipynb --------- Co-authored-by: BenjaminMidtvedt <41636530+BenjaminMidtvedt@users.noreply.github.com> Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com> Co-authored-by: Jesús Pineda <jesus.pineda@physics.gu.se> Co-authored-by: Benjamin Midtvedt <benmid@student.chalmers.se> Co-authored-by: Jesús Pineda <36273229+JesusPinedaC@users.noreply.github.com> Co-authored-by: Ccx55 <ccx555@gmail.com> Co-authored-by: Harshith Bachimanchi <62615092+HarshithBachimanchi@users.noreply.github.com> Co-authored-by: gideon <gideon.jagenstedt@gmail.com> Co-authored-by: Benjamin Midtvedt <benjamin.midtvedt@physics.gu.se>
giovannivolpe
added a commit
that referenced
this pull request
Sep 13, 2023
* chore: autopublish 2022-07-26T13:54:44Z * Remove create-badges job * Delete test.py * Add multi-head masked attention * Update multi-head gated attention to match parent layer * Update documentation * Test multi-head masked attention * allow gated attention layers to use bias * test bias in gated attention layers * set return_attention_weights to False to avoid multi-outputs Use MultiHeadSelfAttention and MultiHeadGatedSelfAttention if want to return the attention weights * reformat gnns/layers.py This commit adds new message-passing graph layers (MPN) and graph convolutional layers to dt, including vanilla MPN, GRUMPN, Masked-attention FGNN, and GraphTransformer. * Update layers.py * Update test_layers.py * Update models.py * Update test_models.py * Update test_models.py * Fix indexing problems related to tf.gather * Allow multi-inputs in ContinuousGenerator * Fix bad conversion to integer * version bump * Fix phase correction at focus and offset calculation * Fix phase correction in propagation * Fix mie phase out of foucs * Fix mie phase out of foucs * Update README.md * Bm/version 1.4.0 (#137) * Update layers.py * Update convolutional.py Transformer-based models can now be reused and expanded quickly and easily * Update documentation * Update Transformer-based models * Delete classifying_MNIST_vit_tutorial.ipynb * Create classifying_MNIST_vit_tutorial.ipynb * Update datasets.py * Allows kwargs as inputs in single_layer_call * Update embeddings.py * masked transformers * reformat transformer models * Create trajectory_analysis_tutorial.ipynb * Add Variational autoencoders * Add variational autoencoders * Update vae.py * Create MNIST_VAE_tutorial.ipynb * Update MNIST_VAE_tutorial.ipynb * Create folder for course examples * Update README.md * Update README.md * Update examples * Update README.md * Update README.md * Update MNIST VAE examples * Added MLP regression example * Update README.md * Create image_segmentation_Unet.ipynb * Update README.md * Documented and tested cell_counting_tutorial.ipynb * improve dnn example * Shift variant mie * Position mie scatterer correctly * implement set z * implement mnist v1 * implement z dependence * remove logging * Implement flattening methods * Implement pooling and resizing * Implement TensorflowDataset * Finalize MNIST * Implement Malaria classification * alpha0 release * fix batchsize in fit * implement dataset.take * Implement datasets * fix phase in mie * Fix mie positioning and focusing * Commit to new branch * add tensorflow datasets dependence * remove test Co-authored-by: Jesús Pineda <jesus.pineda@physics.gu.se> Co-authored-by: Jesús Pineda <36273229+JesusPinedaC@users.noreply.github.com> Co-authored-by: Benjamin Midtvedt <benmid@student.chalmers.se> Co-authored-by: Ccx55 <ccx555@gmail.com> * Add tensorflow datasets to the list of dependencies. * Read requirements.txt into setup.py * remove sphinx from build * remove create badges * Create CITATION.cff * Create .zenodo.json * Update transformer models * Update pint_definition.py * Update requirements.txt * create TimeDistributed CNN * small fixes to lodestar * Update layers.py * Update test_layers.py * remove direct getter of properties * Update scatterers.py Coherence length fix for MieScatterer * Update scatterers.py Added coherence length to the conversion table * mie phase fix * removed pydeepimagej from deps * Change loss input order of CGAN and PCGAN * Create dmdataset (dataset for graph-level regression tasks) * Update gnns/__init__.py * Add detection_linking_hela dataset * Update dmdataset.py * Create the regression_diffusion_landscape * Update scatterers.py CuPy fix for coherence length * Update test_scatterers.py Added a new method for testing MieSphere when coherence length parameter is provided. * Update augmentations.py * Update test_scatterers.py * Update test_scatterers.py * Create endothelial_vs dataset * Update layers.py * Update utils.py * Update docs link * Update README.md * version bump * version bump * Update README.md * Update README.md * Update graphs.py * Update test_generators.py * Update generators.py * fix test * Update vae.py * Bugfix in endothelial_vs dataset * Fix issue with repeated oneof-features (#169) * Update cell_migration_analysis.ipynb * Update features.py (#189) * added WAE (both MMD and GAN) (#185) * added deterministic wae_gan, slightly modified vae (input size)) * changes to VAE, WAE_GAN, and GAN Implemented proposed changes to GAN, VAE, WAE_GAN: - optimizers of WAE_GAN as input parameters by overriding the compile method. - included documentation of input parameters for VAE and WAE_GAN. - WAE_GAN: different learning rates for the autoencoder and the discriminator, 1e-3 and 5e-4, respectively as in the original paper. - included a unit test for WAE_GAN, VAE, and GAN. - removed @as_KerasModel from GAN. - formatted the code for compatibility. * Update test_models.py * fixed typo * extra fixes * WAE generalized allows WAE-GAN and WAE-MMD * fixes * check unit test * compatibility issue removed match for compatibility, replaced with if * test unit corrected assert in test unit for GAN, VAE. and WAE * fixed dimension in test_models * added compile for GAN and WAE in test_model * defined call in gan * fixed input size in GAN --------- Co-authored-by: BenjaminMidtvedt <41636530+BenjaminMidtvedt@users.noreply.github.com> Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com> Co-authored-by: Jesús Pineda <jesus.pineda@physics.gu.se> Co-authored-by: Benjamin Midtvedt <benmid@student.chalmers.se> Co-authored-by: Jesús Pineda <36273229+JesusPinedaC@users.noreply.github.com> Co-authored-by: Ccx55 <ccx555@gmail.com> Co-authored-by: Harshith Bachimanchi <62615092+HarshithBachimanchi@users.noreply.github.com> Co-authored-by: gideon <gideon.jagenstedt@gmail.com> Co-authored-by: Benjamin Midtvedt <benjamin.midtvedt@physics.gu.se> Co-authored-by: Carlo <carlo.manzo@gmail.com>
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
No description provided.