Stochastic Gradient Trees1 by Henry Gouk, Bernhard Pfahringer, and Eibe Frank implementation using Cython. Based on the parer's accompanied repository code.
- numpy>=1.20.2
- cython>=0.29.28
- pandas>=1.3.3
- scikit-learn>=0.24.2
from cysgt.StochasticGradientTree import StochasticGradientTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_breast_cancer
from sklearn.metrics import confusion_matrix, accuracy_score, log_loss
def train(X, y):
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.34)
tree = StochasticGradientTreeClassifier()
tree.fit(X_train, y_train)
y_pred = tree.predict(X_test)
proba = tree.predict_proba(X_test)
acc_test = accuracy_score(y_test, y_pred)
print(confusion_matrix(y_test, y_pred))
print('Acc test: ', acc_test)
print('Cross entropy loss: ', log_loss(y_test, proba))
return tree, acc_test
if __name__ == "__main__":
breast = load_breast_cancer(as_frame=True)
X = breast.frame.copy()
y = breast.frame.target
X.drop(['target'], axis=1, inplace=True)
tree, _ = train(X, y)
pip install .
python classification_breast.py
Multiclass classification (using the One-vs-the-rest multiclass strategy):
python classification_iris.py
python regression_diabetes.py
Footnotes
-
Gouk, H., Pfahringer, B., and Frank, E. Stochastic gradient trees. In Proceedings of The Eleventh Asian Conference on Machine Learning, volume 101 of Proceedings of Machine Learning Research, pp. 1094–1109. PMLR, 2019. ↩